DEPARTMENT OF AEROSPACE ENGINEERING

Guide to Graduate Studies

2017 / 2018
TABLE OF CONTENTS

PREFACE ... iii

I. INTRODUCTION
 a. The University & the Graduate School ... 1
 b. The College of Engineering ... 1
 c. The Aerospace Engineering Department ... 1
 d. Expenses and Financial Aid
 • General Expense ... 1
 • Medical Insurance ... 2
 • Financial Aid ... 3
 • Teaching Assistantships, Research Assistantships & Teaching Aides 3
 • TAides and RAides ... 4
 • Tax Letters ... 5
 e. Departmental Student Organizations .. 7
 f. Aerospace Engineering Faculty ... 8
 g. Laboratory and Computing Staff Listing ... 9
 h. Aerospace Engineering Administrative Staff Listing 9
 i. Graduate Student Resource Listing .. 10

II. AEROSPACE ENGINEERING GRADUATE PROGRAM
 a. Areas of Emphasis ... 12
 b. Course Offerings
 • 400-Level: Senior & Graduate Level Courses .. 12
 • 500-Level: Graduate Level Courses .. 14
 • 600-Level: Graduate Level Courses .. 17
 • 800-Level: Graduate Level Courses .. 17
 c. Aerospace Course Offerings Schedule .. 18

III. ACADEMIC REQUIREMENTS & GUIDELINES
 a. The Graduate School Requirements ... 19
 b. The Department of Aerospace Engineering Requirements 19
 c. Supervision & Advising .. 20
 d. Credit Load & Academic Status
 • Core Requirements .. 21
 • Master of Engineering Degree ... 24
 • Master of Science Degree ... 25
 • Doctoral of Philosophy Degree .. 27

IV. RESEARCH AREAS & FACILITIES
 a. Primary Research Areas ... 42
 b. Computational & Experimental Facilities ... 45
 • Computer Facilities .. 45
 • Experimental Facilities .. 46
 • Duties for Department’s Lab & Computer Coordinators 47
 c. Description of Faculty Interests ... 48
 d. Research Centers & Programs in Engineering .. 53

APPENDIX A ... 55
 • Development of a “Six-S” Laboratory Work Environment 56
 • Safety Manual ... 60
PREFACE

This Guide to Graduate Study provides information about the graduate degree program in the Aerospace Engineering Department of the Pennsylvania State University. It is intended to serve as an introduction to the program for new graduate students and as a reference resource for continuing graduate students, faculty and staff of the department. It is designed to supplement the Graduate Degree Programs Bulletin (henceforth referred to as “the Bulletin”), issued by the Graduate School, which is the primary reference document for graduate study at Penn State. Inquiries about the Bulletin and its contents should be addressed to:

The Graduate School
114 Kern Graduate Building
University Park, PA 16802
Phone: 814-865-1795
Fax: 814-863-4627
Email: gswww@psu.edu
http://www.gradschool.psu.edu/

A brief overview of Penn State University, the Graduate School, the College of Engineering and the Department of Aerospace Engineering is provided in the Introduction.

The Aerospace Graduate Program and Academic Requirements and Guidelines are next discussed in Sections II and III, respectively. Section IV presents the faculty and laboratory staff of the department. Any questions regarding the Aerospace Graduate program should be addressed to:

Lindsay Moist
Graduate Program Assistant
Department of Aerospace Engineering
229 Hammond Building
University Park, PA 16802
Phone: 814-865-6431
Fax: 814-865-7092
Email: lnm3@psu.edu
http://www.aero.psu.edu/

Additional sources of useful information for graduate students may be obtained by contacting:

The University Office of Global Programs
410 Boucke Building
University Park, PA 16802
Phone: 814-865-6348
Fax: 814-865-6480
Email: DISSA-Adviser@psu.edu
https://global.psu.edu/

The Office of Off-Campus Living
230 HUB-Robeson Center
University Park, PA 16802
Phone: 814-865-2346
Fax: 814-863-0812
Email: OffCampus@psu.edu
http://studentaffairs.psu.edu/offcampus/

Student Health Insurance
302 Student Health Center
University Park, PA 16802
Phone: 814-863-7467
Fax: 814-863-1390
Email: uhs-insurance@psu.edu
http://studentaffairs.psu.edu/health/

To the incoming graduate students of the Department, I welcome you all on behalf of the Department of Aerospace Engineering and wish you success in your studies.

Jacob W. Langelaan
Associate Professor & Director of Graduate Studies
Phone: 814-863-6817
Email: jwl16@psu.edu
INTRODUCTION

The University and Graduate School

The Pennsylvania State University (http://www.psu.edu/) is a land-grant University serving the Commonwealth of Pennsylvania from a number of campuses located throughout the State. The central campus, located at University Park, offers undergraduate and graduate education and research through its Colleges of Agricultural Sciences, Arts and Architecture, Business, Communications, Earth and Mineral Sciences, Education, Engineering, Health and Human Development, Information Sciences and Technology, Liberal Arts and Science.

The Graduate School (http://www.gradschool.psu.edu/) administers for the University all graduate programs in the various Colleges and Schools. Among other functions, it provides a common admission process for all graduate programs and administers a number of graduate fellowship programs.

The College of Engineering

Aerospace Engineering is a department within the College of Engineering (http://www.engr.psu.edu/) which is also home for 18 other departments and a number of specialty programs and research units. The Associate Dean for Graduate Studies and Research provides a liaison between the graduate programs within the college and the Graduate School and external research sponsoring organizations. A number of College of Engineering Fellowships are also administered from the Dean’s Office.

The Aerospace Engineering Department

The Department (http://www.aero.psu.edu/) provides undergraduate and graduate educational programs in all the major disciplines of aerospace sciences: aerodynamics, structures, guidance, dynamics and control and propulsion. It promotes and supports vigorous research by its faculty members with assistance from graduate students and maintains a number of experimental and computational research facilities.

It is administered by the Department Head (Dr. Amy R. Prichett), Administrative Assistant (Ms. Sheila Corl), clerical staff, and faculty directors of undergraduate and graduate studies and admission. The Director of Graduate Studies (Dr. Jacob W. Langelaan) is responsible for the admission of new graduate students into the graduate program, the graduate courses and Doctoral Candidacy Examination. He is assisted by the Graduate Program Assistant (Ms. Lindsay Moist).

Graduate programs lead to the Master of Science (M.S.), Master of Engineering (M.Eng.) or Doctor of Philosophy (Ph.D.) degrees.

Expenses and Financial Aid

General Expenses

For the latest information concerning tuition rates, room and board rates, bill due dates, payment plan, refund policy, residency policy, retroactive registration, tuition bill instructions, tax credits and tuition adjustments please go to http://bursar.psu.edu/.
Medical Insurance

The Penn State Student Health Insurance plan (SHIP) is offered through First Student College Health Insurance, underwritten by United Healthcare Student Resources. Most Penn State graduate students are eligible to purchase the Penn State SHIP even if coverage is not required.

Graduate students eligible for SHIP include:

- All graduate students registered for (1) or more credit hours
- **Graduate Assistants** - graduate students who have been appointed to a graduate assistantship. All graduate assistants receive a monthly stipend check, a tuition grant-in-aid, and have signed a “Terms of Offer and General Conditions of a Graduate Assistantship Appointment” with Penn State.
- **Graduate Fellows** - graduate students who have received a fellowship award for which they receive a monthly stipend check from Penn State, and for whom a tuition grant-in-aid is provided.

Students who meet eligibility requirements for the Penn State SHIP must actively attend classes for at least the first 31 days after the date when coverage becomes effective.

Please contact Student Health Insurance by email at uhs-insurance@psu.edu or by phone at 814-865-7467. Information is also available on their website at http://studentaffairs.psu.edu/health/services/insurance/.

As a Graduate Assistant or Graduate Fellow, you are eligible to receive subsidies in the amount of 80% of the annual premium cost for the Penn State SHIP for graduate students. The University will pay this amount directly to the insurance company and will deduct your 20% contribution to premium expense from your monthly stipend.

The insurance subsidy for your eligible spouse/domestic partner or child is 75% of the annual premium expense. As with the subsidy for your individual insurances, the university will pay 75% of the premium expense directly to the insurance companies and you will pay your 25% of the premium costs through a deduction from your stipend.

The term "family" consists of a student and 2 or more dependents, i.e. a student, spouse and one child, a student and 2 or more children, or a student, spouse and 2 or more children. The insurance subsidy for your eligible family is 76% of the annual premium expense. As with the subsidy for your individual insurances, the university will pay 76% of the premium expense directly to the insurance companies and you will pay your 24% of the premium costs through a deduction from your stipend.

The deadline to submit Graduate Assistant or Graduate Fellow enrollment/waive information is September 5, 2017 for the Fall 2017 semester and January 17, 2018 for the Spring 2018 semester. This process needs to be completed every fall semester since the GA/GF benefits are reset to Single Student Coverage each fall semester.

Health insurance is mandatory at Penn State for international students and their accompanying dependents (spouse and/or children).

The mandatory health insurance requirement may be fulfilled in one of two ways:

- Purchase Penn State SHIP
- Demonstrate proof of insurance by submitting a waiver application.
 - **For yourself:** an online waiver must be completed through First Student. A copy of your current health insurance ID card and your health insurance brochure or plan description is required.
 - **For dependents:** a Fall Dependent Waiver Application Form and/or a Spring Dependent Waiver Application Form must be completed through the Student Health Insurance office.

There is a $50 - $100 late fee for students who fail to fulfill the mandatory health insurance requirement by September 5, 2017 for the Fall 2017 semester and January 17, 2018 for the Spring 2018 semester.
Financial Aid

Financing graduate education is an important topic all students. There are numerous sources of support from inside the University and from external agencies that afford funding for graduate students. The most likely source of support is through an assistantship, fellowship or scholarship offered by the college or department. The Graduate School also offers a number of funding programs coordinated by the Office of Graduate Fellowships and Awards Administration. Government agencies, foundations, professional associations and other private entities offer support of graduate education. A database of outside awards is available online at http://www.gradschool.psu.edu/graduate-funding/types-of-graduate-support/external/. The Office of Student Aid administers the Federal Direct Loan program and Federal Work-Study program and maintains a listing of some on-and-off-campus employment opportunities. Information on these opportunities is available online at http://studentaid.psu.edu/types-of-aid/employment.

Half-time teaching and research assistantships are available within Aerospace Engineering on a competitive basis, carrying a stipend plus paid tuition. The student on a half-time assistantship normally schedules 12 credits per semester and performs tasks that, on average, occupy approximately 20 hours per week. For M.S. degree candidates working as teaching assistants, the duration of this support is typically two years, without tuition in the fourth semester. Most research assistantships are also available during the summer, offering an additional stipend. Nearly all assistantships are half-time, however, quarter-time or three-quarter time assistantships may be arranged for special needs.

Teaching Assistantships, Research Assistantships and Teaching Aides

There are two main types of graduate assistantships at Penn State, Teaching Assistantships (TA) and Research Assistantships (RA). The financial support for RAs is usually provided by external grants made to individual faculty members. TAs are controlled by the department.

TA responsibilities typically include grading, running lab sections, holding office hours and problem sessions, and occasional lecturing. TA positions do not usually include summer support. The Department of Aerospace Engineering frequently supports M.S. students as TAs for three (3) semesters because students usually complete the bulk of coursework in three semesters, followed by one (1) semester of support as a Teaching Aide (TAide). The Teaching Aide is a wage payroll position which provides students with support equivalent to that of the TA stipend and does not include tuition remission or insurance coverage.

TAs actually teaching (i.e. lab course 305W) should take ENGR 888 (1 cr.) this semester. The remaining TAs should take the Grader’s Seminar. Please see the Graduate Program Staff Assistant for more details and registration.

All graduate teaching assistants whose first language is not English must take and pass an oral language proficiency test known as AEOCPT (formerly Test of Spoken English). The AEOCPT is administered directly prior to the start of each semester. August testing occurs during the first two weeks prior to the start of fall classes. January testing occurs on the Thursday prior to the start of spring classes. Students must receive department approval to take the test. AEOCPT registration is available online at elp.la.psu.edu. The score an International Teaching Assistant (ITA) receives on this test will determine when he/she may assume teaching duties as a teaching assistant. Scores will be released to the department 72 business hours after the student has been tested.

TAs and TAides are evaluated by supervising instructor at end of each semester. This information is used by the Director of Graduate Studies and the Department Head for making future selections.

RA activities typically include literature review, problem definition, analysis, experiments, report writing, and presentations. A report of this research work and its results will likely constitute the bulk of your thesis. RA positions usually include summer support, at an hourly rate comparable to that of the academic year stipend. To inquire about the possibility of an RA, you should contact faculty members who are performing research of interest to you.

TAs & RAs should register for the maximum number of 12 credits (including thesis research, AERSP 600).
Students may want to apply for the Tuition Assistance Program (STAP) in the Summer Session to maximize tuition monies. Ph.D. students should request summer assistance if they plan to take Comprehensive Examination or Final Defense of Thesis. Faculty and students will be informed of application dates.

TA and RA monthly stipends will be deposited into personal bank accounts on the last working day of each month.

T Aides and R Aides

Students will be paid via wage payroll, on a bi-weekly pay schedule, and will be responsible for their tuition and health insurance expenses. Timesheets reporting hours worked should be promptly submitted to the Bookkeeping office to ensure timely payment.
DATE: February 22, 2006

TO: Graduate Program Chairs, Staff Assistants, Faculty and Graduate Students

FROM: Regina Vasilatos-Younken, Senior Associate Dean

SUBJECT: Discontinuation of “Tax Letters”

Each year, as the time for filing tax returns approaches, questions arise regarding how assistantships and fellowships are treated in terms of tax liability, reporting obligations, etc. Keeping in mind the overriding advice that graduate students, as anyone, should seek the advice of a qualified tax consultant, the following information may be helpful in clarifying how the University handles these different financial entities and the basis for why these differ. Please feel free to share this information with graduate students, faculty and other program personnel who advise your students.

A fellowship recipient is not a University employee. Accordingly, the University has no obligation to (and does not) withhold tax on fellowship awards, or report these awards to Federal (IRS), state or local taxing authorities. Because fellowship amounts are not reported to taxing authorities, nor have taxes been withheld, units have no reason to complete "Tax Letters" for fellowship recipients as they may have in the past for graduate assistants (GAs). Therefore, the University no longer permits the issuance of Tax Letters. Please note that even though the University does not report on or withhold tax from fellowships, recipients may be liable for taxes on any amount of such awards not used for payment of tuition, fees or other qualified education expenses.

Alternatively, GA stipends are wages for federal tax purposes and subject to tax reporting and withholding. However, for PA state and local tax purposes, GA stipends are only taxable when the GA must perform duties beyond those required of all degree candidates in their program. In the past, Tax Letters were prepared for GAs, in order to assist them in obtaining a refund of PA taxes withheld on their GA stipend, given that the University treated all GA stipends as subject to PA tax. Now, PA tax is correctly not withheld on non-taxable GA stipends (i.e., when the GA performs no services beyond those required of all other students in the program, as indicated in the GA appointment form). Thus, the University no longer has reason to issue Tax Letters, given that the appropriate PA tax withholding is applied to each GA paycheck. Therefore, as indicated above, the University no longer permits the issuance of Tax Letters.

International Taxes:

Federal regulations mandate withholding International Taxes for foreign students who receive any assistance in excess of tuition and fees. The Student Loans & Scholarships Office is responsible for withholding these taxes. The tax rate is 14%. As an example:

Tuition + Fees: $5,000

Tuition Provided by Assistantship/Fellowship: $4,790 (Tuition portion only. Stipends are processed through Payroll)

Additional Scholarships: $1,000.00

Amount Subject to International Taxes: ($4790.00 + $1,000.00) – ($5,000) = $790.00

Tax Liability: $790 x 14% = $110.60
However, foreign students from certain countries may qualify for an exemption to this withholding if they are citizens of a country that have a tax treaty with the United States, complete form W-8BEN and submit it to the Student Loans & Scholarships Office. For further information, please refer your students to:

http://www.studentloans.psu.edu/tax.cfm

Again, to determine an individual graduate student’s tax liability, he/she should consult a qualified tax consultant; however, the above may be helpful in providing some guidance and clarifications. For any questions related to the above, please contact the Office of Graduate Fellowships and Awards Administration; 313 Kern Graduate Building: 863-2514.

**

SLC-0502

DATE: January 20, 2005
FROM: Sheila Corl, Administrative Assistant
TO: Deans L. C. Burton & J. M. Mason
SUBJ: Criteria for PA & Local Tax Exemption Status for Graduate Assistantships

Per the request of 1/17/05, listed below are the criteria for which the Department of Aerospace Engineering determines those graduate assistants who are eligible for the state and local tax exemption status.

“It is the expectation of the University as well as the Department of Aerospace Engineering that all MS and PhD degree candidates, as part of their responsibilities (in addition to taking courses), conduct independent research enabling them to prepare a thesis, which is required of all students to meet requirements as specified in the PSU Graduate Degree Programs Bulletin. The work performed by a GRADUATE RESEARCH ASSISTANT involves only research that forms the core of the requirement for the degree, and the same type of research is conducted by all MS or PhD candidates, whether or not they receive support for their efforts.”

“GRADUATE TEACHING ASSISTANTS are providing a service to the Department and University, which is not a requirement of all graduate students.”

sle
Cc: G. A. Lesieutre
 D. B. Spencer
 R.I. Grandy
 D.J. Witherite
 J. G. Shawver

**
Departmental Student Organizations

Aerospace Graduate Student Association (AeroGSA)

The purpose of AeroGSA is to promote and to enhance graduate studies within the Department Aerospace Engineering through professional development activities, to promote interaction among the Aerospace Engineering graduate students and faculty and to provide a forum for communication between graduate students, faculty, and administration within the Department. Membership applications and information on the benefits of belonging to this organization may be obtained from the AeroGSA faculty advisor, Dr. Michael Micci.

American Helicopter Society (AHS)

The American Helicopter Society (AHS) International is the world’s oldest and largest technical society dedicated to enhancing the understanding of vertical flight technology. Since it was founded in 1943 – just as the first US helicopter was being put into service – the Society has been the primary forum for interchange of information on vertical flight technology. According to the AHS Bylaws, the purpose of the Society is to advance the theory and practices of the science of vertical flight aircraft. Membership applications and information on the benefits of belonging to this organization may be obtained from the AHS faculty advisors, Dr. Edward Smith and Dr. Jose Palacios. AHS news and events are posted online at http://sites.psu.edu/pennstateahs/.

American Institute of Aeronautics and Astronautics (AIAA)

The AIAA is the largest American technical society devoted to science and engineering in the fields of space, technology, rocket systems, aerodynamics, and marine systems. The mission of AIAA’s Penn State chapter is to provide aerospace engineering students with unique learning opportunities in addition to what is given in a classroom setting. These opportunities are geared towards engaging students socially and promoting “hands on” engineering work. Membership applications and information on the benefits of belonging to this organization may be obtained from the AIAA faculty advisor, Dr. Robert Melton. Meetings and social events are held regularly during the academic year. Members can also attend the annual student conference for the Mid-Atlantic Region each April. AIAA news and events are posted online at http://sites.psu.edu/aiaa/.

Engineering Graduate Student Council (EGCS)

The purpose of the Engineering Graduate Student Council (EGCS) is to promote and enhance graduate studies within the College of Engineering through professional development activities and to provide a forum for communication between graduate students, faculty, and administration within the College of Engineering. EGSC news and events are posted online at http://www.egsc.psu.edu/.
Aerospace Engineering Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Office</th>
<th>Phone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Sven Bilen</td>
<td>Head of SEDTAPP & Professor</td>
<td>213C Hammond</td>
<td>863-1526</td>
<td>sgb100@psu.edu</td>
</tr>
<tr>
<td>Dr. Kenneth S. Brentner</td>
<td>Professor</td>
<td>233D Hammond</td>
<td>865-6433</td>
<td>ksb16@psu.edu</td>
</tr>
<tr>
<td>Dr. Cengiz Camci</td>
<td>Professor</td>
<td>223 Hammond</td>
<td>865-9871</td>
<td>cxc11@psu.edu</td>
</tr>
<tr>
<td>Dr. Stephen C. Conlon</td>
<td>Senior Research Associate & Associate Professor</td>
<td>3220B Garfield Thomas Water Tunnel</td>
<td>863-9894</td>
<td>scc135@psu.edu</td>
</tr>
<tr>
<td>Dr. Joseph F. Horn</td>
<td>Professor</td>
<td>231C Hammond</td>
<td>865-6434</td>
<td>jfh19@psu.edu</td>
</tr>
<tr>
<td>Dr. Eric N. Johnson</td>
<td>Professor</td>
<td>234A Hammond</td>
<td>865-3813</td>
<td>enj4@psu.edu</td>
</tr>
<tr>
<td>Dr. Jacob “Jack” W. Langelaan</td>
<td>Associate Professor & Director of Graduate Studies</td>
<td>233G Hammond</td>
<td>863-6817</td>
<td>jwl16@psu.edu</td>
</tr>
<tr>
<td>Dr. George A. Lesieutre</td>
<td>Professor & COE, Associate Dean for Research</td>
<td>225A Hammond</td>
<td>863-0103</td>
<td>gal4@psu.edu</td>
</tr>
<tr>
<td>Dr. Jules Lindau</td>
<td>Senior Research Associate & Associate Professor</td>
<td>3330B Garfield Thomas Water Tunnel</td>
<td>865-8938</td>
<td>jwl10@psu.edu</td>
</tr>
<tr>
<td>Dr. Lyle N. Long</td>
<td>Distinguished Professor</td>
<td>229C Hammond</td>
<td>865-1172</td>
<td>lnl@psu.edu</td>
</tr>
<tr>
<td>Dr. Mark D. Maughmer</td>
<td>Professor</td>
<td>233F Hammond</td>
<td>863-4485</td>
<td>mdm@psu.edu</td>
</tr>
<tr>
<td>Dr. Barnes W. McCormick</td>
<td>Boeing Professor Emeritus</td>
<td>224A Hammond</td>
<td>863-0602</td>
<td>bjm6@psu.edu</td>
</tr>
<tr>
<td>Dr. Dennis K. McLaughlin</td>
<td>Professor Emeritus</td>
<td>230A Hammond</td>
<td>865-2560</td>
<td>dkm2@psu.edu</td>
</tr>
<tr>
<td>Dr. Robert G. Melton</td>
<td>Professor & Director of Undergraduate Studies</td>
<td>229B Hammond</td>
<td>865-1185</td>
<td>r81@psu.edu</td>
</tr>
<tr>
<td>Dr. Michael M. Micci</td>
<td>Professor</td>
<td>230C Hammond</td>
<td>863-0043</td>
<td>x0c@psu.edu</td>
</tr>
<tr>
<td>Dr. Philip J. Morris</td>
<td>Boeing A.D. Welliver Professor</td>
<td>233C Hammond</td>
<td>863-0157</td>
<td>pjm@psu.edu</td>
</tr>
<tr>
<td>Dr. Jose L. Palacios</td>
<td>Assistant Professor</td>
<td>233H Hammond</td>
<td>867-4871</td>
<td>jlp324@psu.edu</td>
</tr>
<tr>
<td>Dr. Amy R. Pritchett</td>
<td>Professor & Head of Aerospace Engineering</td>
<td>222A Hammond</td>
<td>865-3648</td>
<td>arp78@psu.edu</td>
</tr>
<tr>
<td>Dr. Sven Schmitz</td>
<td>Associate Professor</td>
<td>232B Hammond</td>
<td>863-0778</td>
<td>sus52@psu.edu</td>
</tr>
<tr>
<td>Dr. Puneet Singla</td>
<td>Associate Professor</td>
<td>224 Hammond</td>
<td>865-3892</td>
<td>pxs433@psu.edu</td>
</tr>
<tr>
<td>Dr. Edward C. Smith</td>
<td>Professor</td>
<td>231D Hammond</td>
<td>863-0966</td>
<td>ecs5@psu.edu</td>
</tr>
<tr>
<td>Dr. Hubert C. Smith</td>
<td>Associate Professor Emeritus</td>
<td>224B Hammond</td>
<td>865-7783</td>
<td>hcs1@psu.edu</td>
</tr>
<tr>
<td>Dr. David B. Spencer</td>
<td>Professor</td>
<td>229A Hammond</td>
<td>865-4537</td>
<td>dbs9@psu.edu</td>
</tr>
<tr>
<td>Dr. Susan Stewart</td>
<td>Senior Research Associate</td>
<td>233E Hammond</td>
<td>863-0138</td>
<td>sjw147@psu.edu</td>
</tr>
<tr>
<td>Dr. Alan R. Wagner</td>
<td>Assistant Professor</td>
<td>230B Hammond</td>
<td>865-3138</td>
<td>azw78@psu.edu</td>
</tr>
<tr>
<td>Dr. Namiko Yamamoto</td>
<td>Assistant Professor</td>
<td>232A Hammond</td>
<td>867-5772</td>
<td>nuy12@psu.edu</td>
</tr>
<tr>
<td>Dr. Michael Yukish</td>
<td>Research Associate & Assistant Professor</td>
<td>4110D Applied Science Building</td>
<td>863-7143</td>
<td>may106@psu.edu</td>
</tr>
</tbody>
</table>
Laboratory and Computing Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Office</th>
<th>Phone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auhl, Richard</td>
<td>Senior Research Assistant & Laboratory Director</td>
<td>226 Hammond</td>
<td>777-5381</td>
<td>rra105@psu.edu</td>
</tr>
<tr>
<td>Catalano, Mark</td>
<td>IT Manager & Systems Coordinator</td>
<td>226 Hammond</td>
<td>865-5921</td>
<td>mac9@psu.edu</td>
</tr>
<tr>
<td>Enders, Ben</td>
<td>IT Support Specialist</td>
<td>210 Hammond</td>
<td>865-3767</td>
<td>bre12@psu.edu</td>
</tr>
<tr>
<td>Heller, Kirk</td>
<td>Systems Administrator</td>
<td>48 Hammond</td>
<td>865-5703</td>
<td>akh123@psu.edu</td>
</tr>
<tr>
<td>Miska, Keith</td>
<td>Research Technologist</td>
<td>25 Hammond</td>
<td>865-5648</td>
<td>kam60@psu.edu</td>
</tr>
</tbody>
</table>

Administrative Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Office</th>
<th>Phone</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barnyak, Michelle</td>
<td>Department Staff Assistant</td>
<td>225 Hammond</td>
<td>863-6361</td>
<td>mlf1@psu.edu</td>
</tr>
<tr>
<td>Besecker, Tammy</td>
<td>Administrative Support Assistant</td>
<td>225 Hammond</td>
<td>863-6357</td>
<td>tdb1@psu.edu</td>
</tr>
<tr>
<td>Corl, Sheila</td>
<td>Administrative Support Coordinator</td>
<td>227C Hammond</td>
<td>865-6997</td>
<td>sx1@psu.edu</td>
</tr>
<tr>
<td>Custer, Amy</td>
<td>Undergraduate Program Staff Assistant</td>
<td>229 Hammond</td>
<td>865-6432</td>
<td>asm1@psu.edu</td>
</tr>
<tr>
<td>Gibboney, Deb</td>
<td>Accounting Clerk</td>
<td>227B Hammond</td>
<td>865-1043</td>
<td>dag22@psu.edu</td>
</tr>
<tr>
<td>Gustus, Elaine</td>
<td>Instructional Designer</td>
<td>231A Hammond</td>
<td>863-7457</td>
<td>etg10@psu.edu</td>
</tr>
<tr>
<td>Kasubick, Brenda</td>
<td>Bookkeeper</td>
<td>227B Hammond</td>
<td>863-1077</td>
<td>bmk16@psu.edu</td>
</tr>
<tr>
<td>Mayes, Debby</td>
<td>Department Head Staff Assistant</td>
<td>225A Hammond</td>
<td>863-0065</td>
<td>dvm3@psu.edu</td>
</tr>
<tr>
<td>Moist, Lindsay</td>
<td>Graduate Program Staff Assistant</td>
<td>229 Hammond</td>
<td>865-6431</td>
<td>lnm3@psu.edu</td>
</tr>
<tr>
<td>Mottin, Debbie</td>
<td>Staff Assistant</td>
<td>233C Hammond</td>
<td>865-1966</td>
<td>daj122@psu.edu</td>
</tr>
<tr>
<td>Spallino, Christopher</td>
<td>Communications Strategist</td>
<td>248 East Calder Way, 4th Floor</td>
<td>867-6223</td>
<td>cjs53@psu.edu</td>
</tr>
</tbody>
</table>
Graduate Student Resource Guide

The Affirmative Action Office is committed to the concept of affirmative action to ensure equal opportunity in all aspects of employment for those historically excluded and to foster diversity in the University community. http://www.psu.edu/dept/aaoffice/

Career Services assists students of all academic programs and class years with identifying and achieving their individual career goals. http://studentaffairs.psu.edu/career/

The Center for Spiritual and Ethical Development (CSED) offers a welcoming, safe, inclusive environment for the Penn State community to explore a multitude of faith traditions in a compassionate, open-minded setting. CSED aims to promote an environment that stretches beyond tolerance to a genuine appreciation of and respect for religious and spiritual diversity. http://studentaffairs.psu.edu/spiritual/

Counseling & Psychological Services (CAPS) is designed to enhance students’ ability to fully benefit from the University environment and academic experience. CAPS can help students resolve personal concerns that may interfere with their academic progress, social development, and satisfaction at Penn State. Some of the more common concerns include anxiety, depression, difficulties in relationships (friends, roommates, or family); sexual identity; lack of motivation or difficulty relaxing, concentrating or studying; eating disorders; sexual assault and sexual abuse recovery; and uncertainties about personal values and beliefs. http://studentaffairs.psu.edu/counseling/

Directorate of International Students & Scholars Advising (DISSA) provides answers to questions and needs that are unique to international students. The office is located at 410 Boucke Building. https://global.psu.edu/

The Office for Disability Services (ODS) provides information and assistance to students with disabilities. http://equity.psu.edu/ods/

Graduate and Professional Student Association (GPSA) is the representative body for all graduate and professional students. The GPSA addresses issues of concern to graduate students and elects members to sit on shared-governance bodies of the University. The GPSA also organizes social events for graduate students. http://gpsa.psu.edu/

The Graduate Writing Center (GWC) is sponsored by the Graduate School and provides assistance to graduate students who wish to enhance their writing skills. Graduate students are invited to schedule appointments for one-on-one discussions of their writing projects. http://gwc.psu.edu/

The Office of Human Resources provides resource booklets on child care facilities in the State College area and summer programs and camps for school-age children. http://ohr.psu.edu/

Lions Pantry is to help provide sustenance to Penn State students experiencing food insecurity. http://sites.psu.edu/lionspantrypsu/

The Office of Off-Campus Living (OCL) opportunities are posted through online classifieds or for specific questions visit 230 HUB-Robeson Center. http://studentaffairs.psu.edu/offcampus/

The Office for Research Protections (ORP) provides information and resources to ensure that Penn State research is conducted in accordance with federal, state and local regulations and guidelines that protect human subjects, animals, students and personnel involved with research. http://www.research.psu.edu/orp

Safe Walk Service is operated under the auspices of Auxiliary Police and will provide walking accompaniment for Penn State students, employees and visitors who may feel unsafe walking alone on campus at night. The escort service may be reached at 814-865-WALK (9255). http://www.police.psu.edu/up-police/services/safe-walk-service.cfm
The Office of Student Aid is a good place to begin the search for financial assistance. http://studentaid.psu.edu/

The Office of Student Conduct is responsible for dealing with violations of the Code of Conduct including sexual assault, harassing, stalking, and physical assault. http://studentaffairs.psu.edu/conduct/

Union and Student Activities (USA) complements the academic experience by offering students opportunities in leadership, social responsibility, citizenship, volunteerism and student employment. http://studentaffairs.psu.edu/hub/

University Police & Public Safety is committed to protecting our community through professional service, education, diversity and ethical accountability by promoting safety and security. http://www.police.psu.edu/psu-police/

Problem resolution
Graduate students occasionally have difficulties with their advisors, their programs or an academic matter associated with their programs. The first step in problem resolution is always to talk with your advisor and then with the program chair or department head and then the associate dean of your college. If satisfactory resolution remains elusive, the associate dean of the Graduate School is available to provide guidance and maintain neutrality. Issues discussed during meetings with the associate dean will remain confidential if requested by the student. Appointments may be made by calling 814-865-2516.

Academic Integrity
The University does not tolerate violations of academic integrity, which include but are not limited to: plagiarism, cheating, falsification of information, misrepresentation, or deception.

Plagiarism
Plagiarism is often a confusing concept. At Penn State, plagiarism means taking someone’s words and presenting them as your own. Cutting and pasting from a website is considered plagiarism. Copying verbatim from any source without using quotation marks and the full reference is plagiarism. Plagiarism is a serious violation of academic integrity regardless of whether it is a homework exercise, an exam, a thesis, or a manuscript for publication.

University policies may be viewed online at http://guru.psu.edu/policies/. Important policies include:
- Sexual Harassment (AD41)
- Professional Ethics (AD47)
- Parking Rules (BS04)
- Intellectual Property (RA11)

Graduate Student Policies may be viewed online at http://bulletins.psu.edu/graduate/appendices/. Important policies include:
- Grade mediation (G-10)
- Resolution of problems (Appendix II)
- Termination of program (Appendix III)
- Termination of assistantship (Appendix IV)
- Residency requirements (Appendix V)
THE AEROSPACE GRADUATE PROGRAM

Areas of Emphasis

The Department provides coursework and research projects in the following areas of emphasis:
analytical/computational fluid dynamics, aeroacoustics, experimental fluid dynamics, flight science and vehicle
dynamics, dynamics and control, rotorcraft engineering, structural dynamics/structures and materials, space
propulsion, and turbomachinery. Graduate students may combine any number of these in a program leading to the M.
Eng., M.S. or Ph.D. degrees.

The student’s academic advisor typically works with the student in selecting courses and research areas. A temporary
advisor is assigned to each student upon entry into the program. The student is encouraged to subsequently select a
permanent advisor from among the faculty after becoming more acquainted with them and their research, preferably
by the end of the first semester.

Course Offerings

400 Series: Senior and Graduate Level Courses

The following 400-level courses may be taken by graduate students with advisor approval:

AERSP 401A Spacecraft Design--Preliminary (3) Conceptual and preliminary design of a spacecraft, its constituent
subsystems, and related systems, to satisfy a given set of specifications. Prerequisite: AERSP 309. Prerequisite or concurrent: AERSP 450

AERSP 401B Spacecraft Design--Detailed (2) Detailed design of the constituent subsystems and related support systems for
a spacecraft. Prerequisite: AERSP 301, AERSP 401A

AERSP 402A Aircraft Design--Preliminary (3) Conceptual and preliminary design of an aircraft, its constituent
subsystems, and related systems, to satisfy a given set of specifications. Prerequisite: AERSP 306. Prerequisite or concurrent: AERSP 413

AERSP 402B Aircraft Design--Detailed (2) Detailed design of the constituent subsystems and related support systems for
an aircraft. Prerequisite: AERSP 301, AERSP 402A

AERSP 404H Flight Vehicle Design and Fabrication II (3 per semester/maximum of 12) Project management, design,
fabrication, aerodynamic and structural testing, and flight evaluation of an advanced composite flight vehicle. Prerequisite: AERSP 204H

AERSP 405 Experimental Methods and Projects (3) Experimental methods involving a variety of aerospace engineering
topics; teams of students focus on advanced measurement techniques and project engineering. Prerequisite: AERSP 305W

AERSP 407 Aerodynamics of V/STOL Aircraft (3) Rotary wing aircraft; VTOL and STOL performance; propeller-wing
combinations; jet flap; high lift devices. Prerequisite: AERSP 312

AERSP 410 Aerospace Propulsion (3) Analysis and performance characteristics of reciprocating engine, turbo-jet, turbo-
prop, turbo-fan, ram-jets, and chemical rockets. Aerothermodynamics of inlets, combustors, and turbomachinery. Prerequisite: AERSP 312

AERSP 412 Turbulent Flow (3) Homogeneous turbulence; spectral transfer of energy, viscous dissipation; turbulent shear
flow; mixing-length theory, eddy viscosity, scaling laws, energy budget. Prerequisite: one course in fluid mechanics
AERSP 413 Stability and Control of Aircraft (3) Static and dynamic stability and control of aircraft; open and closed loop systems.
Prerequisite: AERSP 304, AERSP 306

AERSP 420 Principles of Flight Testing (3) In-flight and analytical studies of airplane performance, stability, and control; reduction of data; instrumentation; flight test techniques.
Prerequisite: AERSP 306

AERSP 423 Introduction to Numerical Methods in Fluid Dynamics (3) Finite difference methods applied to solving viscid/inviscid fluid dynamics problems, error control, numerical stability.
Prerequisite: AERSP 312 or M E 320; MATH 250 or MATH 251; CMPSC 201 or CMPSC 202

AERSP 424 Advanced Computer Programming (3) Engineering and scientific programming topics: object oriented programming, parallel programming, and various modern languages (e.g. C++, Java, and Ada).
Prerequisite: CMPSC 201 or CMPSC 202; MATH 220

AERSP 425 Theory of Flight (3) Advanced wing and airfoil theory, conformal mapping, slender body theory.
Prerequisite: AERSP 306

AERSP 430 Space Propulsion and Power Systems (3) Analysis and performance of chemical and nuclear rockets, electric propulsion systems. Introduction to solar, chemical, thermoelectric, and nuclear power sources.
Prerequisite: AERSP 410 or M E 432

AERSP 440 Introduction to Software Engineering for Aerospace Engineers (3) Software engineering for safety- and mission-critical systems, including requirements, management, processes, designs, programming, validation/verification, and other aspects of software development.
Prerequisite: CMPSC 201 or CMPSC 202

AERSP 450 Orbit and Attitude Control of Spacecraft (3) Principles of mechanics and vector analysis applied to basic concepts of satellite motion and control, rocket ballistics, and gyroscopic instruments.
Prerequisite: AERSP 304, AERSP 309

AERSP 460 Aerospace Control Systems (3) Design and analysis of feedback control systems for aerospace applications; stability, root locus, time- and frequency-domain, state-space methods.
Prerequisite: AERSP 304

AERSP 470 Advanced Aerospace Structures (3) Design and analysis of aerospace structures. Plates and sandwich panels; composite materials; structural dynamics; aeroelasticity; damage tolerance.
Prerequisite: AERSP 301. Prerequisite or concurrent: AERSP 304, E MCH 315

AERSP 473 (E MCH 473) Composites Processing (3) An introduction to the principles of mechanics governing manufacturing, computer-aided design, and testing of composite materials and structures.
Prerequisite: E MCH 471

AERSP 490 (E E 471, NUC E 490) Introduction to Plasmas (3) Plasma oscillations; collisional phenomena; transport properties; orbit theory; typical electric discharge phenomena.
Prerequisite: E E 330 or PHYS 467

AERSP 492 (E E 472) Space Astronomy and Introduction to Space Science (3) The physical nature of the objects in the solar system; the earth's atmosphere, ionosphere, radiation belts, magnetosphere, and orbital mechanics.
Prerequisite: E E 330 or PHYS 400

AERSP 494 Aerospace Undergraduate Thesis (1-3 per semester/maximum of 6) Individual problem investigations reported in written thesis and seminar lectures. Cooperative research with faculty guidance on topics of current interest.
Prerequisite: seventh-semester standing

AERSP 494H Aerospace Undergraduate Thesis (1-3 per semester/maximum of 6) Individual problem investigations reported in written thesis and seminar lectures. Cooperative research with faculty guidance on topics of current interest.
Prerequisite: seventh-semester standing
AERSP 496 Independent Studies (1-18) Creative projects, including research and design, which are supervised on an individual basis and which fall outside the scope of formal courses.

AERSP 497 Special Topics (1-9) Formal courses given infrequently to explore, in depth, a comparatively narrow subject which may be topical or of special interest.

Advanced Orbital Mechanics (3) Applications of classical celestial mechanics to space flight planning. Determination and construction of orbital parameters by approximation methods. Perturbation techniques. Prerequisite: AERSP 450 or E MCH 409 or PHYS 419

Autonomous Underwater Vehicle (AUV) Design (1.5) Students taking this course will design and build an autonomous underwater vehicle (AUV) capable of carrying out simple tasks (e.g. find and mark or retrieve small objects) in water depths less than 30'. Component technologies include underwater proposers, vehicle attitude control, acoustic and optical sensing, ballast control for vehicle stability, beacon-based position estimation, simple manipulators, power system design and control. Prerequisite: permission of program

Spacecraft/Environment Interactions (3) This course will examine various aspects of spacecraft aerodynamics and interactions with space environment. The course will include some aspects of spacecraft design and the latest computational methods for calculating spacecraft aerodynamic forces and moments and thruster plume contamination.

Wind Energy Engineering & Projects (3) This course will provide an overview of the wind energy enterprise as the nation aims to achieve 20% wind by 2030 (a ten-fold increase from a couple of years ago). This industry has a rapidly growing need for workforce, especially those trained in the engineering of wind energy systems.

AERSP 499 (IL) Foreign Studies (1-12) Courses offered in foreign countries by individual or group instruction.

500 Series: Graduate Level Courses
The following 500-level courses may be taken by graduate students:

AERSP 504 Aerodynamics of V/STOL Aircraft (3) Jet wings, high lift devices, propellers and ducted propellers, circulation and boundary layer control, unsteady airfoil theory. Prerequisite: AERSP 407

AERSP 505 Aero- and Hydroelasticity (3) Interaction of elastic systems having several degrees of freedom with fluid flows in various configurations.

AERSP 506 Rotorcraft Dynamics (3) Modeling and analysis techniques for dynamic response, vibration, aeroelastic stability, and aeromechanical stability of rotary-wing vehicles. Prerequisite: AERSP 504, E MCH 571

AERSP 507 Theory and Design of Turbomachinery (3) Theory and principles of machinery design: compressors, turbines, pumps, and rotating propulsors; opportunity to work out design examples.

AERSP 508 Foundations of Fluid Mechanics (3) Mathematical review, fluid properties, kinematics, conservation laws, constitutive relations, similarity principles, the boundary layer, inviscid flow, vorticity dynamics, wave motion.

AERSP 509 Dynamics of Ideal Fluids (3) Irotational flow theory, two-dimensional and axisymmetric flows, airfoil theory, complex variables, unsteady phenomena; flow with vorticity, finite wing theory. Prerequisite: AERSP 508

AERSP 510 Compressible Flow (3) Classification and solution of compressible flow problems, high-speed gasdynamics, unsteady motion, transonic and hypersonic flows, atmospheric reentry.

AERSP 514 **Stability of Laminar Flows** (3) The stability of laminar motions in various geometries as influenced by boundary conditions and body forces of various kinds.

AERSP 518 **Dynamics and Control of Aerospace Vehicles** (3) Dynamical problems of aircraft and missiles, including launch, trajectory, optimization, orbiting, reentry, stability and control, and automatic control. Prerequisite: AERSP 413 or AERSP 450

AERSP 524 (M E 524) **Turbulence and Applications to CFD: DNS and LES** (3) First of two courses: scalings, decompositions, turbulence equations; scale representations, Direct and Large-Eddy Simulation modeling; pseudo-spectral methods; 3 computer projects. Prerequisite: AERSP 508 or M E 521

AERSP 525 (M E 525) **Turbulence and Applications to CFD: RANS** (3) Second in two courses: scalings, decomposition, turbulence equations; Reynolds Averaged Navier Stokes (RANS) modeling; phenomenological models; 3 computer projects. Prerequisite: AERSP 508 or M E 521

AERSP 526 (M E 526) **Computational Methods for Shear Layers** (3) Study of numerical solution methods for steady and unsteady laminar or turbulent boundary-layer equations in two and three dimensions. Prerequisite: AERSP 423 or M E 523

AERSP 527 (M E 527) **Computational Methods in Transonic Flow** (3) Numerical solution of partial differential equations of mixed type, with emphasis on transonic flows and separating boundary layers. Prerequisite: AERSP 423 or M E 523

AERSP 530 **Aerothermochemistry of Advanced Propulsion Systems** (3) Physics and chemistry needed to analyze high performance rocket propulsion systems including reacting high temperature radiating gas and plasma flows. Prerequisite: AERSP 312 or M E 420

AERSP 535 (M E 535) **Physics of Gases** (3) An introduction to kinetic theory, statistical mechanics, quantum mechanics, atomic and molecular structure, chemical thermodynamics, and chemical kinetics of gases.

AERSP 540 (NUC E 540) **Theory of Plasma Waves** (3) Solutions of the Boltzmann equation; waves in bounded and unbounded plasmas; radiation and scattering from plasmas. Prerequisite: E E 471

AERSP 550 **Astrodynamics** (3) Applications of classical celestial mechanics to space flight planning. Determination and construction of orbital parameters by approximation methods. Perturbation techniques. Prerequisite: AERSP 450 or E MCH 409 or PHYS 419

AERSP 560 **Finite Element Method in Fluid Mechanics and Heat Transfer** (3) Application of finite element techniques to viscous/unsteady fluid flow/heat transfer problems. Prerequisite: AERSP 312, AERSP 313

AERSP 571 (E MCH 571, M E 571) **Foundations of Structural Dynamics and Vibration** (3) Modeling approaches and analysis methods of structural dynamics and vibration. Prerequisite: AERSP 304, E MCH 470, M E 450 or M E 470

AERSP 583 **Wind Turbine Aerodynamics** (3) Analysis of wind turbine performance, aeroacoustics, and loads; turbine selection for site-specific application.

AERSP 590 **Colloquium** (1-3) Continuing seminars which consist of a series of individual lectures by faculty, students, or outside speakers.

AERSP 596 **Individual Studies** (1-9) Creative projects, including non-thesis research, which are supervised on an individual basis and which fall outside the scope of formal courses.

AERSP 597 **Special Topics** (1-9) Formal courses given on a topical or special interest subject which may be offered infrequently; several different topics may be taught in one year or term.

Advanced Materials for Aerospace Engineering (3) Advanced materials are critical to improve performance, safety and sustainability of air flight and space exploration in extreme environment. This course will provide the survey of engineering knowledge on existing and future advanced materials for aerospace applications. Class
participants will first learn about common aerospace materials (metal alloys, ceramics and polymer composites): how these materials satisfy the tight performance requirements and withstand extreme environment. Second, the participants will study the origins of their unique properties: atomic bonding and packing, grains and boundaries, interfaces/interphases and micro-structuring. Third, novel material design (noncomposites and metamaterials), mostly in the nano and micro scales and how their micro-structures drive their advanced properties will be discussed, together with their current challenges in applications (scalable fabrication and certification).

Aircraft Icing (3) Model, simulation, and rotor stand/wind tunnel testing of aircraft components subjected to icing conditions. The course focuses on ice accretion scaling laws, liquid water content calculations, ice accretion modeling, and modeling and evaluation of de-icing systems.

Autonomous Underwater Vehicle (AUV) Design (1.5) Students taking this course will design and build an autonomous underwater vehicle (AUV) capable of carrying out simple tasks (e.g. find and mark or retrieve small objects) in water depths less than 30’. Component technologies include underwater proposers, vehicle attitude control, acoustic and optical sensing, ballast control for vehicle stability, beacon-based position estimation, simple manipulators, power system design and control. Prerequisite: instructor permission

Behavior of Advanced Composite Structures (3) Analysis techniques for composite beams, plates, and shells, energy and finite element formulations, elastic tailoring concepts, buckling of composite structures. Prerequisite: AERSP 302, E MCH 471 or equivalent introductory course in composite materials

Engineering of Wind Power Plants – Onshore & Offshore (3) This course concerns the development of Wind Farms with emphasis on siting, forecasting and wake/wave modeling.

Experimental Methods and Projects (3) Experimental methods used in a variety of research areas in Aerospace Engineering. Team projects will be chosen to design experiments and fabricate modifications to existing apparatus, conduct the experiments, process and interpret that data and assemble progress reports and a final report.

GPS Theory and Application (3) This course will provide an understanding of the GPS architecture, signals, measurement, performance and estimation of position, velocity and time. It will cover augmentation such as differential GPS and carrier phase measurements.

Linear and Nonlinear Estimation (3) This course will cover estimation and data fusion for linear and nonlinear systems: (a) introduction to Gaussian random variable; (b) Gauss-Markov estimation and the Best Linear Unbiased Estimator; (c) minimum mean square error estimators; (d) Kalman filter; (e) Extended Kalman filter and the Sigma Point Kalman Filter; (f) effects of non-Gauss noise and non-Gauss initial state estimates; (g) histogram and particle filters. Examples will be taken from aerospace and robotics applications, including (among others): fusion of GPS and inertial measurements; robot localization; target tracking; and simultaneous localization and mapping.

Interplanetary Astrodynamics (3) Theory and applications of astrodynamics applied to the design, development and execution of interplanetary space missions. This course focuses on mathematics and practices in interplanetary astrodynamics. Major topics include: astrodynamics applied to interplanetary space missions, the N-body problem, orbit transfers, Lambert’s problem, gravity assists, planetary entry, descent and landing, planetary ephemerides, tracking sources and measurements, and spacecraft navigation. Other topics may be covered as time permits. Prerequisites: AERSP 450

Rotorcraft Aeromechanics (3) This experimental course is divided approximately 50-50 between helicopter stability and control and helicopter acoustics. This course is computer intensive and requires you to write the following three programs: predication of rotor performance in hover using vortex theory; prediction of rotor performance in hover and forward flight; and prediction of stability and motion.

Small Scale Turbomachinery (3) Aero-thermo-mechanical design of small gas turbine systems for unmanned-aerial vehicle (UAV) systems.

Smart Structures (3) Over the last 10-15 years there has been tremendous interest in the use of smart materials as elements of “adaptive” structures. This class of materials includes, among others, piezoelectric materials, shape memory alloys, and electro- and magneto-rheological fluids. The course covers the fundamental behavior of these materials, their constitutive modeling, develops models for the introduction of smart materials as elements of adaptive structures (in particular for structural vibration reduction, damping augmentation, and shape control or morphing applications), addresses issues such as sizing and optimal placement of actuators and sensors in structures, and examines different control strategies and the resulting system behavior. Several smart materials application case studies are also presented.

Spacecraft/Environment Interactions (3) This course will examine various aspects of spacecraft aerodynamics and interactions with the space environment. The course will include some aspects of spacecraft design and the latest computational methods for calculating spacecraft aerodynamic forces and moments and thruster plume contamination.

Statistical Orbit Determination (3) This course is an introduction to the mathematics and practices in statistical orbit determination. The major topics are: classical orbit determination techniques, probability and statistics, least squares solution, weighted least squares, statistical interpretation of the least squares problem, Cholesky decomposition, Guss-Markoff theorem, sequential estimation algorithms, extended sequential estimation algorithms, square root filters, state noise compensation algorithm, smooth algorithms, minimum variance, maximum likelihood, Bayesian estimation. Other topics as time permits.

Prerequisites: AERSP 450 or instructor permission

AERSP 599 Foreign Studies (1-2 per semester/maximum of 4) Courses offered in foreign countries by individual or group instruction.

600 Series: Graduate Level Courses
The following 600-level courses may be taken by graduate students:

AERSP 600 Thesis Research (1-15) Credits used for M.S. and Ph.D.

AERSP 601 Ph.D. Dissertation Full-Time (0) Ph.D. students will register for this one-credit course the semester following the passing of the Oral Comprehensive Exam, and substantial completion of course requirements. (Students may also Audit one class when registered for 601.) (Graduate Staff Assistant will schedule the students eligible for this course.)

AERSP 602 Supervised Experience in College Teaching (1-3 per semester/maximum of 6) Provides an opportunity for supervised and graded teaching experience in aerospace engineering courses.

AERSP 603 Foreign Academic Experience (1-12) Foreign study and/or research constituting progress toward the degree at a foreign university.

AERSP 610 Thesis Research Off Campus (1-15) Used to complete thesis when student is no longer on campus or summer credits.

AERSP 611 Ph.D. Dissertation Part-Time (0) Used to complete dissertation when student is no longer a full-time student.

800 Series: Graduate Level Courses
The following 800-level courses may be taken by graduate students:

AERSP 880 Wind Turbine Systems (3) Wind turbine technology and the critical elements of turbine systems design.

AERSP 886 Engineering of Wind Project Development (3) An overview of the wind project development process and technical considerations for onshore and offshore applications.
Aerospace Course Offerings Schedule

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fall Semester 2017</td>
<td></td>
<td>Spring Semester 2018</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Aerospace Explorer -- First-Year Seminar</td>
<td>1</td>
<td>Aerospace Explorer -- First-Year Seminar</td>
</tr>
<tr>
<td>97</td>
<td>1</td>
<td>Hands on Helicopter -- First-Year Seminar</td>
<td>97</td>
<td>Hands on Helicopter -- First-Year Seminar</td>
</tr>
<tr>
<td>204</td>
<td>2</td>
<td>Flight Vehicle Design and Fabrication I (Honors)</td>
<td>204</td>
<td>Flight Vehicle Design and Fabrication I (Honors)</td>
</tr>
<tr>
<td>301</td>
<td>3</td>
<td>Aerospace Structures</td>
<td>304</td>
<td>Dynamics and Control of Aerospace Systems</td>
</tr>
<tr>
<td>309</td>
<td>3</td>
<td>Astronautics</td>
<td>305</td>
<td>Aerospace Technology Lab</td>
</tr>
<tr>
<td>311</td>
<td>3</td>
<td>Aerodynamics I</td>
<td>306</td>
<td>Aeronautics</td>
</tr>
<tr>
<td>313</td>
<td>3</td>
<td>Aerospace Analysis</td>
<td>308</td>
<td>Mechanics of Fluids (Honors)</td>
</tr>
<tr>
<td>401A</td>
<td>3</td>
<td>Spacecraft Design -- Preliminary</td>
<td>312</td>
<td>Aerodynamics II</td>
</tr>
<tr>
<td>402A</td>
<td>3</td>
<td>Aircraft Design -- Preliminary</td>
<td>397</td>
<td>Aerospace Design Studio</td>
</tr>
<tr>
<td>404</td>
<td>3</td>
<td>Flight Vehicle Design and Fabrication II (Honors)</td>
<td>423</td>
<td>Introduction to Numerical Methods in Fluid Dynamics</td>
</tr>
<tr>
<td>405</td>
<td>3</td>
<td>Experimental Methods and Projects</td>
<td>420</td>
<td>Advanced Aerospace Structures</td>
</tr>
<tr>
<td>407</td>
<td>3</td>
<td>Aerodynamics of V/STOL Aircraft</td>
<td>421</td>
<td>Advanced Composites Process</td>
</tr>
<tr>
<td>410</td>
<td>3</td>
<td>Aerospace Propulsion</td>
<td>492</td>
<td>Space Astronomy and Introduction to Space Science</td>
</tr>
<tr>
<td>412</td>
<td>3</td>
<td>Turbulent Flow</td>
<td>495</td>
<td>Aerodynamics of Fluids (Honors)</td>
</tr>
<tr>
<td>413</td>
<td>3</td>
<td>Stability and Control of Aircraft</td>
<td>505</td>
<td>Turbomachinery</td>
</tr>
<tr>
<td>420</td>
<td>3</td>
<td>Principles of Flight Testing</td>
<td>507</td>
<td>Turbulence: RANS</td>
</tr>
<tr>
<td>424</td>
<td>3</td>
<td>Advanced Computer Programming</td>
<td>509</td>
<td>Dynamics of Ideal Fluids</td>
</tr>
<tr>
<td>425</td>
<td>3</td>
<td>Theory of Flight</td>
<td>525</td>
<td>Turbulence: RANS</td>
</tr>
<tr>
<td>450</td>
<td>3</td>
<td>Orbit and Attitude Control of Spacecraft</td>
<td>530</td>
<td>Advanced Rocketry</td>
</tr>
<tr>
<td>460</td>
<td>3</td>
<td>Aerospace Control Systems</td>
<td>550</td>
<td>Astrophysics</td>
</tr>
<tr>
<td>490</td>
<td>3</td>
<td>Introduction to Plasmas</td>
<td>583</td>
<td>Wind Turbine Aerodynamics</td>
</tr>
<tr>
<td>494</td>
<td>1-3</td>
<td>Aerospace Undergraduate Thesis</td>
<td>596</td>
<td>Individual Studies</td>
</tr>
<tr>
<td>494H</td>
<td>1-3</td>
<td>Aerospace Undergraduate Thesis (Honors)</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>496</td>
<td>1-18</td>
<td>Independent Studies</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>497 - 1</td>
<td>1-3</td>
<td>Collegiate Wind Competition</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>504</td>
<td>3</td>
<td>Aerodynamics of V/STOL Aircraft</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>508</td>
<td>3</td>
<td>Foundations of Fluid Mechanics</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>514</td>
<td>3</td>
<td>Stability of Laminar Flows</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>535</td>
<td>3</td>
<td>Physics of Gases</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>571</td>
<td>3</td>
<td>Foundations of Structural Dynamics and Vibration</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>596</td>
<td>1-9</td>
<td>Individual Studies</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>597 - 2</td>
<td>3</td>
<td>Advanced Materials for Aerospace Engineering</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>597 - 3</td>
<td>3</td>
<td>Aircraft Icing</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>600</td>
<td>1-15</td>
<td>Thesis Research</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>601</td>
<td>0</td>
<td>Ph.D. Dissertation Full-Time</td>
<td>597</td>
<td>Spacecraft/Environmental Interactions</td>
</tr>
<tr>
<td>610</td>
<td>1-15</td>
<td>Thesis Research Off-Campus</td>
<td>601</td>
<td>Ph.D. Dissertation Full-Time</td>
</tr>
<tr>
<td>611</td>
<td>0</td>
<td>Ph.D. Dissertation Part-Time</td>
<td>610</td>
<td>Thesis Research Off-Campus</td>
</tr>
<tr>
<td>880</td>
<td>3</td>
<td>Wind Turbine Systems</td>
<td>611</td>
<td>Ph.D. Dissertation Part-Time</td>
</tr>
</tbody>
</table>

Check with Aerospace Engineering office late in the spring semester for summer course offering.
ACADEMIC REQUIREMENTS & GUIDELINES

Graduate School Requirements

A detailed discussion of these requirements can be found in the Bulletin. All graduate students are urged to familiarize themselves with these requirements at http://bulletins.psu.edu/graduate.

Master’s Degree

- Grade-Point Average
- Time Limitation
- Transfer Credit
- Residency Requirements
- Examinations
- Thesis Acceptance

Doctoral Degrees

- General Requirements
- Satisfactory Scholarship
- Grade-Point Average
- Time Limitation
- Transfer Credit
- Candidacy Examination
- Advisers and Doctoral Committees
- English Competency
- Comprehensive Examination
- Final Oral Examination
- Dissertation Acceptance
- Residence Requirement
- Continuous Registration

Departmental Requirements

The Department offers courses of study leading to three graduate degrees in Aerospace Engineering: the M.Eng., the M.S., and the Ph.D.

The M. Eng. is a non-thesis professional master’s degree. An intensive one-year, 30-credit program, the M. Eng. requires completion of a capstone experience. This is an ideal program for an engineer with a bachelor’s degree who wishes to expand his or her set of career possibilities in aerospace-related fields. It is also pursued by highly qualified students who wish to accelerate progress towards a Ph.D. degree.

The M.S. is a thesis-based master’s degree having a significant research component. It requires a minimum of 30 credits and is designed to be completed in two years. This is an ideal program for an engineer with a bachelor’s degree who wishes to go deeper into research in specific areas of interest. The M.S. may be a terminal degree for students who intend to pursue research-related careers, or it may be a stepping-stone en route to a Ph.D. degree.

The Ph.D. is a thesis-based doctor’s degree. It is very strongly research-oriented and is a terminal degree for students who intend to pursue careers in research and development, research management, or university teaching. It is an excellent program for an individual with a master’s degree in engineering, physical science, or mathematics who wishes to pursue a career in academic, governmental and/or industry research in the field.
Scholarship and Research Integrity: SARI@PSU
SARI@PSU is a responsible conduct of research (RCR) education program for students, postdocs, and faculty at Penn State. SARI (Scholarship and Research Integrity) is designed to create awareness of ethical principles and established professional norms in the performance of all activities related to scholarship and research. Ultimately, our goal is to further foster trust among scientists and to increase the public’s support for research.

There are two parts to SARI@PSU for graduate students: an online course offered through the Collaborative Institutional Training Initiative (CITI) and five hours of discussion-based activities. Each graduate department or program has a specific SARI@PSU plan.

Satisfying the Part 1 Requirement. The CITI Program at Penn State website provides more information about the program, including instructions, FAQs, and access to the Responsible Conduct of Research (RCR) online training that is used to satisfy the Part 1 requirement.

Satisfying the Part 2 Requirement. Five (5) hours of activity is required. Students may attend up to two (2) workshops sponsored by the Office for Research Protections (ORP), see the SARI Workshop Schedule for upcoming events. For aerospace engineering students, at least one (1) workshop must be conducted by the Department.

Submit the SARI@PSU checklist with all attachments to Lindsay Moist only when fully completed and a minimum of four weeks before graduation. FAILURE TO COMPLETE THESE REQUIREMENTS IN A TIMELY MANNER MAY DELAY YOUR GRADUATION.

Supervision and Advising
Students are under the general supervision of their advisors. (See policy below concerning the assignment of an advisor.) All coursework for which the student registers for credit must be approved by the advisor on the Graduate Degree Program Plan Approval form.

The form must be submitted to the advisor for approval and should be updated periodically. All completed forms should be given to the Graduate Program Staff Assistant.

The policy for assignment of advisors is as follows:

- Each new student is assigned an advisor prior to when he/she arrives.
- If a student is supported by research monies, then his/her advisor is permanent (i.e., advisors for Research Assistants and Research Aides are permanent).
- If a student is supported by non-research monies, i.e., departmental funds or any type of self-support such as private funds or fellowships, then his/her advisor initially is temporary. (i.e., advisors for Teaching Assistants, Teaching Aides, and students with government fellowships, etc. are temporary).
- Students with temporary advisors are encouraged to spend approximately two months meeting with Aerospace faculty before selecting a permanent advisor. Students should inform the Graduate Program Staff Assistant upon the selection of a permanent advisor.
Credit Loads and Academic Status

Graduate Assistants--Graduate assistants must be enrolled at Penn State as graduate students. More specifically, since assistantships are provided as aids to completion of advanced degrees, assistants must be degree-seeking and enrolled in residence for credit loads each semester that fall within the limits indicated in the table below. Maximum limits on permissible credit loads are indicated in order to assure that the student can give appropriate attention both to academic progress and assistantship responsibilities. These considerations give rise to the table of permissible credit loads below.

<table>
<thead>
<tr>
<th>Level of Assistantship</th>
<th>Credits Per Semester</th>
<th>Credits per 6-Week Summer Session</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>Quarter-time</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>Half-time</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Three-quarter-time</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

*Credits taken during the Maymester and over both six-week summer sessions must total a minimum of 9 (for 1/4- and 1/2-time assistantships) or 6 (for 3/4-time assistantships) and cannot exceed a maximum of 8 (for 3/4-time assistantships), 12 (for 1/2-time assistantships), or 14 (for 1/4-time assistantships).

To provide for some flexibility, moderate exceptions to the specified limits may be made in particular cases. The credit limits specified above may only be increased or decreased in exceptional cases for a specific semester or summer session by permission of the assistantship supervisor, the student's academic adviser, and the dean of the Graduate School (requests should be submitted for the dean's approval via the Office of Graduate Enrollment Services). The Graduate School expects that an exception made in one semester or summer session will be compensated for by a suitably modified credit load in the subsequent semester or summer session, so that, on the average, normal progress is maintained at a rate falling within the limits above. Failure to do so may jeopardize the student's academic status. Maintenance of the established credit loads and responsibility for consequences of a graduate student's change of course load rest with the student and adviser. The course load is a factor in determining whether a graduate student is classified as a full-time or part-time student; has met residence requirements; and is eligible to hold a fellowship, traineeship, assistantship, or departmental or program appointment.

Full-Time Academic Status--Students holding fellowships, traineeships, or other awards based on academic excellence are required to carry 9 or more credits each semester (fall and spring). For awards that require full-time summer registration, students should register for a minimum cumulative total of 9 credits (over all summer sessions), or SUBJ 601 (in the case of post-comprehensive doctoral candidates). A graduate assistant whose semester or summer session credit load meets or exceeds the minima in the above credit table and whose assistantship duties are directly related to his or her degree objectives is considered by the Graduate School to be engaged in full-time academic work for that semester or summer. A post-comprehensive doctoral candidate who is registered for SUBJ 601 also is so considered.

Part-Time Academic Status--A student who in any semester or summer session is registered for study but who does not meet the criteria for full-time status is considered to be engaged in part-time academic work for that semester. This includes students registered for SUBJ 611.

Credit Loads for Internationals--The Department of Homeland Security requires that international students proceed in a timely fashion toward completion of their degrees, as established by the academic department and (usually) stated on their initial immigration document. Failure to maintain normal progress toward completion of the degree during this period will jeopardize the student’s ability to continue academic study, adjust status, or seek future employment in the United States. Because of this, students should not be enrolled less than full-time during fall or spring semester without prior approval of the University Office of Global Programs Directorate of International Student & Scholar Advising (DISSA).

The U.S. Department of Homeland Security requires the DISSA to report violations of status, including failure to maintain full-time enrollment. The following is intended to provide guidance for international
graduate students and for DISSA in determining full-time status: A graduate student is considered full-time if registered for a minimum of 9 credits, excluding courses taken for audit, or if a Ph.D. candidate who has successfully completed the comprehensive examination and is registered for SUBJ 601.

- On rare occasions, and under exceptional circumstances, international students in master’s degree programs who have completed all required course work and, if applicable, research for their degree, may be granted an exception to the need to maintain full-time status as defined above, for a limited period (in no case to exceed two semesters), by special petition to DISSA in advance of the semester in which the exception is needed. This request must be initiated by the student using the DISSA eForm system. The academic adviser will be asked through this eForm system to justify the reduced course load.

- Under all circumstances, international students must be enrolled—either full-time or approved by DISSA for a reduced course load.
Core Course Requirements

Basic Field Theory: (6 credits) - Complete one course in two of the following categories:

Fluid Mechanics:
- AERSP 508 -- Foundations of Fluid Mechanics

System Dynamics:
- ACS 519 -- Sound Structure Interaction
- AERSP 506 -- Rotorcraft Dynamics
- AERSP 518 -- Dynamics and Control of Aerospace Vehicles
- AERSP 550 -- Astrodynamics
- AERSP 571 -- Foundations of Structural Dynamics and Vibrations
- AERSP 597* -- Interplanetary Astrodynamics
- AERSP 597* -- Rotorcraftstab/Con
- EMch 520 -- Advanced Dynamics
- PHYS 530 -- Theoretical Mechanics

Solid Mechanics:
- AERSP 505 -- Aero- and Hydroelasticity
- AERSP 597* -- Advanced Materials for Aerospace Engineers
- AERSP 597* -- Behavior of Advanced Composite Structures
- AERSP 597* -- Smart Structures
- EMch 500 -- Advanced Mechanics of Materials
- EMch 507 -- Theory of Elasticity and Applications
- EMch 540 -- Introduction to Continuum Mechanics
- ME 560 -- Solid Mechanics

Numerical/Computational Methods: (3 credits)
- AERSP 423 -- Introduction to Numerical Methods in Fluid Dynamics
- AERSP 526 -- Computational Methods for Shear Layers
- AERSP 527 -- Computational Methods in Transonic Flow
- AERSP 528 -- Computational Methods for Recirculating Flows
- AERSP 529 -- Advanced Analysis and Computation of Turbomachinery Flows
- AERSP 560 -- Finite Element Method in Fluid Mechanics and Heat Transfer
- AERSP 596 -- Individual Studies
- AERSP 597* -- Introduction to Many-Body Problems and Algorithms
- AERSP 597* -- Statistical Orbit Determination
- AERSP 597* -- Theory and Application of Global Navigation Satellite Systems
- ABE 513 -- Applied Finite Element, Finite Difference, and Boundary Element
- CE 541 -- Structural Analysis
- EMch 560 -- Finite Element Analysis
- EMch 597* -- Dynamics & Vibration of Non Linear Systems
- MATH 441 -- Matrix Algebra
- MATH 523 -- Numerical Analysis I
- MATH 550 -- Numerical Linear Algebra
- MATH 551 -- Numerical Solution of Ordinary Differential Equations
- MATH 552 -- Numerical Solutions of Partial Differential Equations
- MATH 553 -- Introduction to Approximation Theory
- MATH 555 -- Numerical Optimization Techniques
- MATH 556 -- Finite Element Methods
- ME 523 -- Numerical Solutions Applied to Heat Transfer and Fluid Mechanics Problems
- ME 561 -- Structural Optimization Using Variational and Numerical Methods
- NuE 530 -- Parallel/Vector Algorithms for Scientific Applications
- Stat 500 -- Applied Statistics
- Stat 515 -- (Chem 560) -- Stochastic Processes

Applied Mathematics: (3 credits)
- EMch 524* -- Mathematical Methods in Engineering
- EMch 550 -- Variational and Energy Methods in Engineering
- EMch 597* -- Dynamics Vibration of Non Linear Systems
- MATH 505 -- Mathematical Fluid Mechanics
- MATH 507 -- Dynamical Systems I
- MATH 508 -- Dynamical Systems II
- MATH 509 -- Linear Analysis and Applications I
- MATH 510 -- Linear Analysis and Applications II
- MATH 511 -- Ordinary Differential Equations I
- MATH 512 -- Ordinary Differential Equations II
- MATH 513 -- Partial Differential Equations I
- MATH 514 -- Partial Differential Equations II
- MATH 580 -- Introduction to Applied Mathematics I
- MATH 581 -- Introduction to Applied Mathematics II
- PHYS 525 -- Methods of Theoretical Physics I
- STAT 500 -- Applied Statistics
Master of Engineering Degree Requirements

- A total of at least 30 credits is required for the degree
- Restrictions on course credits
 - A maximum of nine credits at 400-level
 - A minimum of 21 credits at or above the 500-level
 - A minimum of 18 credits of aerospace courses (600-level courses do not count)
- Core Course Requirements
 Other courses may be substituted with advance approval of advisor and the Director of Graduate Studies BEFORE you begin the course.
- Satisfactory completion of a capstone course or project (for 3 credits of EDSGN 558 or another graduate systems or vehicle design course)
- Satisfactory completion of an Engineering Experimental and Data Analysis course (AERSP 405, AERSP 597, etc.)

Minimum grade-point average for completion of all graduate degrees is 3.0.

All courses used to satisfy degree requirements must be technical in nature, i.e. engineering, mathematics or physical sciences.

Self-supported students who register for at least 9 credits are considered to be engaged in full-time academic work for that semester. If such a student wishes to register for more than 15 credits, an exception to the normal maximum load must be granted through petition (with advisor’s approval) to the Office of Graduate Enrollment Services.

Credit Loads for Internationals--The Department of Homeland Security requires that international students proceed in a timely fashion toward completion of their degrees, as established by the academic department and (usually) stated on their initial immigration document. Failure to maintain normal progress toward completion of the degree during this period will jeopardize the student’s ability to continue academic study, adjust status or seek future employment in the United States. Because of this, students should not be enrolled less than full-time during fall or spring semester without prior approval of the University Office of Global Programs Directorate of International Student & Scholar Advising (DISSA).

TIME LIMITATION: All requirements for a master's degree (including acceptance of a thesis, paper or project report as may be specified), whether satisfied on the University Park campus or elsewhere, must be met within eight years of admission to degree status. Individual programs may set shorter time limits. Extensions may be granted by the Director of Graduate Enrollment Services in appropriate circumstances.

*Information obtained from Graduate Degree Program Bulletin accessed at: http://www.bulletins.psu.edu/graduate/
Master of Science Degree Requirements

- A total of at least 30 credits is required for the degree
- Restrictions on course credits
 - A maximum of six credits at 400-level
 - A minimum of six credits at or above the 500-level
 - A minimum of 12 credits of aerospace courses (600-level courses do not count)
 - A minimum of six thesis credits (600/610)
- Core Course Requirements
 Other courses may be substituted with advance approval of advisor and the Director of Graduate Studies BEFORE you begin the course.
- Satisfactory completion of an M.S. thesis

Minimum grade-point average for completion of all graduate degrees is 3.0.

All courses used to satisfy degree requirements must be technical in nature, i.e. engineering, mathematics, or physical sciences.

Self-supported or fellowship students who register for at least 9 credits are considered to be engaged in full-time academic work for that semester. If such a student wishes to register for more than 15 credits, an exception to the normal maximum load must be granted through petition (with advisor’s approval) to the Office of Graduate Enrollment Services.

Students with a half-time assistantship need to register for 12 credits, typically 9 credits of course work and 3 credits of research.

Credit Loads for Internationals--The Department of Homeland Security requires that international students proceed in a timely fashion toward completion of their degrees, as established by the academic department and (usually) stated on their initial immigration document. Failure to maintain normal progress toward completion of the degree during this period will jeopardize the student’s ability to continue academic study, adjust status, or seek future employment in the United States. Because of this, students should not be enrolled less than full-time during fall or spring semester without prior approval of the University Office of Global Programs Directorate of International Student & Scholar Advising (DISSA).

The Department of Aerospace Engineering frequently supports M.S. students as Teaching Assistants (TA). Our practice is to provide such Teaching Assistant support for three (3) semesters, followed by one (1) semester of support as a Teaching Aide. The Teaching Aide is a wage payroll position with no tuition or health insurance coverage. A Teaching Aide position provides students with support equivalent to that of the Teaching Assistant stipend, with possible support for tuition. Thus, students are expected to substantially complete their course requirements in the first three semesters; this involves enrolling for approximately 10-12 credits per semester.

Students may want to apply for the Tuition Assistance Program in the Summer Session to maximize tuition monies. Only students that have been on assistantships may apply.

Student will need to present their thesis at a public forum. Please provide an abstract of your thesis and thesis title along with the date and time you would like to present at least two weeks prior to presenting to the Graduate Program Staff Assistant so that a room can be arranged and notice of the presentation can be prepared and distributed.

A M.S. thesis requires three signatures: your advisor, a reader, and the Department Head.

Two bound copies of thesis is required. (One copy for the advisor and one copy for the department).
TIME LIMITATION: All requirements for a master’s degree (including acceptance of a thesis, paper, or project report as may be specified), whether satisfied on the University Park campus or elsewhere, must be met within eight years of admission to degree status. Individual programs may set shorter time limits. Extensions may be granted by the Director of Graduate Enrollment Services in appropriate circumstances.

*Information obtained from Graduate Degree Program Bulletin at: http://www.bulletins.psu.edu/graduate/

Direct Admission to Ph.D. Program

Admission to the Ph.D. program requires satisfactory completion of a master’s program in engineering, physical science or mathematics. Admission to the Ph.D. program prior to completion of a master’s degree may be considered upon the student passing the Ph.D. candidacy exam. A student must have completed at least 18 course credits beyond the baccalaureate degree in order to take the Ph.D. candidacy exam and is not granted official status as a doctoral candidate until the master’s degree is complete and the candidacy exam has been passed.
Ph.D. Degree Requirements

Doctoral students must satisfy the Core Course Requirements. Graduate course requirements in addition to those specified in the Core Course Requirements are set by the candidate’s doctoral committee on an individual basis. In general, there is no specified number of credits for the Ph.D. degree; however, students typically take at least 24 course credits beyond the M.S. degree. The doctoral dissertation will involve research activity normally exceeding one full year of full time graduate work equivalent to 30 credits; exact requirements are determined by a student’s doctoral committee. The minimum GPA for completion of the Ph.D. degree is 3.0.

- Restrictions on course credits
 - A maximum of six credits at 400-level

- Core Course Requirements
 Other courses may be substituted with advance approval of advisor and the Director of Graduate Studies BEFORE you begin the course.

- Experimental Requirement: (Do one of the following)
 - Perform dissertation research having an experimental component.
 - Serve as TA for AERSP 305W.
 - Take a course that emphasizes laboratory measurements, and error analysis, such as AERSP 420, AERSP 597* (Advanced Experimental Methods), ME 530, ME 536, ME 544, EMch 506, EMch 528, or ACS 505.
 - Perform independent study (1 credit AERSP 596) by arrangement by your advisor. This could involve assisting another graduate student with experimental measurements, supervising an undergraduate laboratory project, or another activity.
 - Other requirements
 - ENGR 888 (for TAs and TAides)
 - Dissertation

Minimum grade-point average for completion of all graduate degrees is 3.0.

All courses used to satisfy degree requirements must be technical in nature, i.e. engineering, mathematics, or physical sciences.

Self-supported or fellowship students who register for at least 9 credits are considered to be engaged in full-time academic work for that semester. If such a student wishes to register for more than 15 credits, an exception to the normal maximum load must be granted through petition (with advisor’s approval) to the Office of Graduate Enrollment Services.

Students with a half-time assistantship need to register for 12 credits, typically 9 credits of course work and 3 credits of research.

Credit Loads for Internationals--The Department of Homeland Security requires that international students proceed in a timely fashion toward completion of their degrees, as established by the academic department and (usually) stated on their initial immigration document. Failure to maintain normal progress toward completion of the degree during this period will jeopardize the student’s ability to continue academic study, adjust status, or seek future employment in the United States. Because of this, students should not be enrolled less than full-time during fall or spring semester without prior approval of the University Office of Global Programs Directorate of International Student & Scholar Advising (DISSA).

Students may want to apply for the Tuition Assistance Program in the Summer Session to maximize tuition monies. Only students that have been on assistantships may apply.

Two bound copies of the dissertation is required. (One copy for the advisor and one copy for the department).
TIME LIMITATION: A doctoral student is required to complete the program, including acceptance of the doctoral dissertation or the passing of the final performance, within eight years after the date of successful completion of the candidacy examination. Individual programs may set shorter time limits. Extensions may be granted by the Director of Graduate Enrollment Services in appropriate circumstances.

*Information obtained from Graduate Degree Program Bulletin at: http://www.bulletins.psu.edu/graduate/

In addition to the aforementioned requirements, doctoral students must also satisfy the following Graduate School requirements:

- Candidacy Exam
- Advisors and Doctoral Committee
- English competency
- Comprehensive Examination
- Final Oral Examination
- Dissertation Acceptance
- Residence Requirement
- Continuous Registration

Candidacy Exam

In Aerospace Engineering, the Candidacy Examination is given each Fall and Spring Semester within the first two months of the semester. Each Ph.D. program enrollee is required to take the examination during his or her second semester following enrollment; however, those who have been out of an academic environment for a year or more immediately preceding their enrollment may petition for a one-semester delay in taking the examination. A memo from the student’s advisor to the Director of Graduate Studies requesting this deferral must be submitted at least two weeks before the scheduled candidacy exam.

Ph.D. Candidacy Exam Information

<table>
<thead>
<tr>
<th>Fall 2017</th>
<th>Spring 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date:</td>
<td>Date:</td>
</tr>
<tr>
<td>October 14, 2017</td>
<td>February 3, 2018</td>
</tr>
<tr>
<td>Location:</td>
<td>Location:</td>
</tr>
<tr>
<td>220 Hammond Building</td>
<td>220 Hammond Building</td>
</tr>
<tr>
<td>Time:</td>
<td>Time:</td>
</tr>
<tr>
<td>9:00 am – 3:00 pm</td>
<td>9:00 am – 3:00 pm</td>
</tr>
</tbody>
</table>

PLEASE NOTE:
Students may request a copy of a Schaum’s Outline on fundamentals of Engineering and can use this book during the exam. (DO NOT ADD ANYTHING TO THE BOOK). Please see the Graduate Program Staff Assistant.
Copies of practice candidacy exams and Schaum’s Outline are located on ANGEL for your viewing convenience, as well. Students are permitted to use a calculator that has no ability to communicate to the outside world.
DESCRIPTION OF CANDIDACY EXAM
(POLICY G5)

Ph.D. CANDIDACY EXAMINATION
(Revised format – July 1996)*

PURPOSE
The Ph.D. candidacy examination is intended to provide an additional measure (beyond what can be determined from the admissions documents) of a student’s preparation for doctoral work. This is particularly useful for a student whose earlier degrees were obtained in non-aerospace engineering programs and/or from other institutions. To be successful in a Ph.D. program, students must understand a range of subjects beyond the particular topic of their dissertation research; hence, the candidacy exam should assess breadth of knowledge, posing questions from the primary fields that constitute our discipline: dynamics, fluids, mathematics, and structures. The exam does not require mastery of all four fields, but instead allows the student some choice in demonstrating a sufficient level of understanding in several areas.

FORMAT
Faculty will prepare three questions in each of the four subject areas, following the respective syllabus. Each problem is to be appropriate for a senior-level undergraduate or introductory-level graduate treatment of the subject. The exam is closed book, except for formulas provided with the examination questions. You may obtain this formula book to familiarize yourself with what is provided from the Graduate Staff Assistant prior to the exam.

A student taking the exam must attempt any eight of the twelve problems; the time limit for the exam is six hours. As a guideline, a passing grade is 75%, based upon the sum of all eight grades.

ADMINISTRATION
The Director of Graduate Studies will form four committees, giving each the responsibility to: 1) generate three problems, with solutions, and 2) carefully check the problems for clarity and appropriate level of difficulty.

Following the exam, two faculty will grade each problem on a scale of 1 to 10, and average their scores to give a single grade for that problem. If the two scores differ by more than 2 points, the Director will ask them to confer and attempt to resolve the difference; if that is not possible, a third member will be asked to grade the problem and that score will be averaged with the other two.

The departmental faculty will then meet to review the grades and determine the outcomes. A student who fails the exam on the first attempt is allowed to take the subsequent exam (typically offered near the beginning of each semester). In the event of a second failure, a student is then removed from the Ph.D. program. A student who fails the exam twice may petition the Graduate Academic Committee in writing for an oral candidacy examination. If the petition is granted, the Director of Graduate Studies will form a committee of three faculty to administer the oral exam and request that they make a recommendation of “pass” or “fail”; the Graduate Committee will then make the final decision.

NOTE: The July 1996 revised format replaces Aerospace Engineering Policy No. G5
Ph.D. Candidacy Exam
Fluids Syllabus

CONTROL VOLUME ANALYSIS
Continuity, momentum and energy equations, applications

DIFFERENTIAL ANALYSIS OF FLUID MOTION
Kinematics
Rotation, vorticity, circulation
Continuity equation
Navier-Stokes equations

INCOMPRESSIBLE INVISCID FLOW
Euler equations
Bernoulli equation
Velocity potential and stream function
Elementary flows
Forces and moments acting on a body
Thin airfoil theory
Lifting-line theory
Slender-body theory

DIMENSIONAL ANALYSIS AND SIMILITUDE
Application to problems in aerodynamics, hydrodynamics, rotating machinery, etc.

INCOMPRESSIBLE LAMINAR AND TURBULENT FLOWS
Exact solutions of the Navier-Stokes equations
Laminar and turbulent pipe flow
Blasius boundary layer solution
Integral methods for laminar and turbulent boundary layers
Similarity analysis of laminar and turbulent boundary layers
Laminar jets and wakes
Eddy viscosity and mixing length concepts
Reynolds averaged equations

COMPRESSIBLE FLOWS
Thermodynamics
One-dimensional compressible flow
Speed of sound and Mach number
Alternative forms of the one-dimensional energy equation
Stagnation, static and critical quantities
Normal and oblique shock relations, shock polar
Hugoniot equation
One-dimensional flow with heat addition
One-dimensional flow with friction
Supersonic flow over wedges
Prandtl-Meyer expansions
Prandtl-Glauert equation
Linearized theory for thin airfoils
Full potential equation

EXAMPLE REFERENCES:
STRESS AND STRAIN
Definitions
Differential equations of stress equilibrium
Stress transformation under coordinate change, principal stresses, and maximum shear stresses
Linear strain-displacement relation; tensor vs. engineering strains; compatibility equations
Strain transformation, principal strains, and maximum shear strains
Strain measurement using strain gages

MATERIAL BEHAVIOR
Linearly elastic constitutive relations; isotropic, orthotropic
Yield and failure theories; Von Mises and Tresca criteria
Fatigue

THEORY OF SIMPLE STRUCTURAL MEMBERS (RODS, BEAMS, SHAFTS)
Kinematic assumptions (e.g., Bernoulli-Euler beam)
Differential equations of equilibrium; displacement and force boundary conditions
Principle of superposition; St. Venant’s principle
Extension (displacements, strains, stresses)
Stress concentration (plane stress)
Extensional rigidity
Bending (displacements, strains, stresses)
Build-up (“composite”) beams
Modulus-weighted centroid, neutral axis; flexural rigidity
Torsion (displacements, strains, stresses)
Thin-walled open sections; thin-walled open sections; thin-walled multi-cell closed sections
Shear flow
Shear center, elastic axis; torsional rigidity
Transverse shear (displacements, strains, stresses)
Thin-walled sections

ENERGY METHODS
Work and potential; strain energy; kinetic energy
Principle of virtual work; Principle of stationary total potential energy
Ritz method
Complementary potential energy; Castigliano’s theorems; Unit Load method

FINITE ELEMENT METHOD
Truss and beam elements; nodal degrees of freedom; displacement functions
Strain energy; potential or virtual work of applied loads
Element stiffness matrices, load vectors associated with distributed loads
Element-to-global coordinate transformation
Assembly of global stiffness matrix and load vector; enforcing boundary conditions
Recovery of element forces, stresses, and strains; reaction forces

ELASTIC STABILITY
Concept of stability
Overall column buckling; effects of end conditions, length, flexural rigidity
Effects of initial imperfections or load eccentricity
Buckling of rectangular plates under in-plane loads

EXAMPLE REFERENCES:
KINEMATICS
- Orthogonal coordinate systems and transformations
 - Cartesian, cylindrical, spherical systems
- Motion in inertial and accelerating reference frames
 - Rectilinear/curvilinear velocities and accelerations; Coriolis acceleration

MOMENTUM AND IMPULSE
- Momentum and impulse – linear and angular
- Newton’s laws and D’Alembert’s principle

WORK AND ENERGY PRINCIPLES
- Hamilton’s principle
- Lagrange’s equations

PARTICLE MECHANICS
- Particle dynamics in a uniform gravitational field
- Elementary orbital mechanics

RIGID-BODY DYNAMICS
- Inertia tensor
- Euler’s equations
- Torque-free motion
- Gyroscopic devices

VIBRATION AND STRUCTURAL DYNAMICS
- Lump-parameter systems
 - Single and multiple DOF discrete systems
 - Algebraic eigenvalue problem; natural frequencies and mode shapes
 - Forced response of damped systems
- Distributed-parameter systems (structures)
 - Wave equation for rods; equation of motion for transverse vibration of beams
 - Eigenvalue boundary value problem; natural frequencies and mode shapes
 - Kinetic energy
 - Rayleigh-Ritz method
 - Modal superposition for forced response of damped structure

EXAMPLE REFERENCES:
ORDINARY DIFFERENTIAL EQUATIONS
- First- and second-order equations
- Homogeneous and inhomogeneous equations
- Systems of ordinary differential equations
- Elementary Laplace transforms
- Series solutions
- Sturm-Liouville equation

PARTIAL DIFFERENTIAL EQUATIONS
- Classification of equations
- Separable solutions
- Boundary and initial value problems
- Green functions
- Similarity solutions
- Characteristics

VECTOR CALCULUS
- Scalars and Vectors
- Dot and cross products
- Conformal mapping
- Evaluation of line integrals
- Method of residues
- Evaluation of real integrals

FOURIER SERIES

FOURIER AND LAPLACE TRANSFORMS
- Inverse Laplace transforms

LINEAR ALGEBRA
- Matrix operations
- Eigenvalues and eigenvectors
- Gaussian elimination
- LU factorization

NUMERICAL ANALYSIS
- Interpolation and root finding
- Numerical integration
- Finite difference approximations
- Solution of ordinary differential equations
- Solution of partial differential equations

SPECIAL FUNCTIONS
- Bessel and Hankel functions
- Legendre and Chebyshev polynomials

EXAMPLE REFERENCES:

(Note: given some duplication of material in these references, students need not review them all, but they are also encouraged to consult sources in addition to those listed here.)
Advisors and Doctoral Committee

Following admittance to a graduate degree program, the student should confer with the head of that major program concerning procedures and the appointment of an academic adviser. Consultation or arrangement of the details of the student's semester-by-semester schedule is the function of the academic adviser. The academic adviser may be a member of the doctoral committee, or may be another member of the Graduate Faculty designated by the program head or chair of the major program for this specific duty. The academic adviser may be different than the major adviser who supervises the culminating experience (dissertation/final performance; i.e., dissertation/performance adviser).

Doctoral Committee

General guidance of a doctoral candidate is the responsibility of a doctoral committee consisting of four or more active members of the Graduate Faculty, which includes at least two faculty members in the major field. The dissertation/performance adviser must be a member of the doctoral committee. The dissertation/performance adviser usually serves as chair, but this is not required. If the candidate is also pursuing a dual-title field of study, a co-chair representing the dual-title field must be appointed. In most cases, the same individual (e.g., dissertation/performance adviser) is a member of the Graduate Faculty in both the major and dual-title fields, and in such cases may serve as sole chair.

At least one regular member of the doctoral committee must represent a field outside the candidate’s major field of study in order to provide a broader range of disciplinary perspectives and expertise. This committee member is referred to as the “Outside Field Member.” In cases where the candidate is also pursuing a dual-title field of study, the dual-title representative to the committee may serve as the Outside Field Member.

Additionally, in order to avoid potential conflicts of interest, the primary appointment of at least one regular member of the doctoral committee must be in an administrative unit that is outside the unit in which the dissertation/performance adviser's primary appointment is held (i.e., the adviser's administrative home; in the case of tenure-line faculty, this is the individual's tenure home). This committee member is referred to as the “Outside Unit Member.” In the case of co-advisers, the Outside Unit Member must be from outside the administrative home(s) of both co-advisers. In some cases, an individual may have a primary appointment outside the administrative home of the student’s dissertation/performance adviser and also represent a field outside the student’s major field of study; in such cases, the same individual may serve as both the Outside Field Member and the Outside Unit Member.

If the candidate has a minor, that field must be represented on the committee by a “Minor Field Member.”

The doctoral committee is appointed by the director of Graduate Enrollment Services, upon recommendation of the head of the major program, soon after the student is admitted to candidacy. The dean of the Graduate School may, on occasion, appoint one or more members of the committee in addition to those recommended by the head of the program.

A person who is not a member of the Graduate Faculty (and may not be affiliated with Penn State) who is otherwise qualified and has particular expertise in the candidate's research area may be added as a “Special Member,” upon recommendation by the head of the program and approval of the director of Graduate Enrollment Services). A Special Member is expected to participate fully in the functions of the doctoral committee. If the Special Member is asked only to read and approve the doctoral dissertation or to evaluate the final performance, that person is designated a Special Signatory. Occasionally, Special Signatories may be drawn from within the Penn State faculty in particular situations.

Graduate Faculty officially appointed by the Graduate School to a doctoral committee who then leave Penn State may maintain that committee appointment for up to one year if the student's graduate program and the dean of the Graduate School, through the Office of Graduate Enrollment Services, approve the request for this exception. A retired or emeritus faculty member may serve as a doctoral committee chair if, and only if, he/she was officially appointed and began chairing the committee prior to retirement and
has the continuing approval of the program head and the dean of the Graduate School, through the Office of Graduate Enrollment Services. Requests must be sent by the program head to the director of Graduate Enrollment Services. Otherwise, the committee must be revised to either remove the faculty member from the committee or change the individual's appointment to a Special Member.

The membership of doctoral committees should be reviewed periodically by the chair or head of the program to ensure that all members continue to qualify for service on the committee in their designated roles. For example, if type of appointments, employment at the University, etc., have changed since initial appointment to the committee, changes to the committee membership may be necessary. If changes are warranted, they must be made as soon as possible to prevent future problems that may delay academic progress for the student (e.g., ability to conduct the comprehensive examination or final oral examination/final performance).

Chair
The chair or at least one co-chair must be a member of the graduate faculty of the doctoral program in which the candidate is enrolled. A retired or emeritus faculty member may chair a doctoral committee if he/she was officially appointed and began chairing the committee prior to retirement and has the approvals noted above. The primary duties of the chair are to: (1) maintain the academic standards of the doctoral program, Graduate Council, and the Graduate School and assure that all procedures are carried out fairly, (2) ensure that the comprehensive examination and final oral examination/final performance are conducted in a timely fashion, (3) arrange and conduct all meetings, and (4) ensure that requirements set forth by the committee are implemented in the final version of the dissertation (Ph.D./D.Ed.)/final performance (D.M.A.).

Responsibilities of Doctoral Committees
The doctoral committee is responsible for approving the broad outline of the student’s program and should review the program as soon as possible after the student’s admission to candidacy. Moreover, continuing communication among the student, the committee chair, the dissertation/performance adviser, and the members of the committee is strongly recommended, to preclude misunderstandings and to develop a collegial relationship between the candidate and the committee.

The “Graduate Student Committee Policies and Procedures and Committee Appointment Signature Page” can be obtained from the Graduate Program Staff Assistant and, when completed, will need to be approved by the Director of Graduate Studies. This form is necessary to initiate paperwork for formal appointment of the members by the Graduate School.

- **English Competency**

The Graduate School requires a formal assessment of reading, writing, and speaking abilities in English for all Ph.D. students.

The Department of Aerospace Engineering implements the Graduate School English Proficiency Policy by focusing on the attainment of English proficiency as an important component of the development of student research skills. The Department's plan requires demonstration of high-level competence in the use of the English language, including reading, writing, and speaking. Please inform the Graduate Program Staff Assistant, at least one week in advance, of the date, time and place of the exam.

Initial Assessment of English Proficiency
The goal of the initial stage of assessment is to identify those students having serious deficiencies in their command of the English language. Upon entering the Ph.D. program, students normally meet with numerous departmental faculty, including the Department Head, the Director of Graduate Studies, and several potential faculty advisors. Each of these people has ample opportunity to informally assess student competence in English. It is the responsibility of the student's academic advisor to identify serious deficiencies and to recommend an immediate course of action. Recommended courses include ESL 114G-118G. The earlier a
student attains English competency, the more effectively he or she can concentrate on developing research capabilities. The advisor will continue monitoring progress in this regard until the student passes the written (technical) candidacy examination.

➢ **English Proficiency Exam**

Upon passing the candidacy exam, a student's faculty advisor will consult with the Director of Graduate Studies and initiate the constitution of a Doctoral Committee. The committee should be convened as soon as practical (normally within a semester upon passing the candidacy exam) to establish general student research direction and specific coursework requirements. As a natural part of this process, the committee will formally assess the student's English proficiency; this includes native and non-native English speaking students. The goal at this stage is to identify students having significant deficiencies in their command of English. In addition to informal discussions, the assessment will consist of the following elements:

1. **Reading.** In consultation with the faculty advisor and committee, the student will identify several publications pertinent to the contemplated research project. The student will then read and summarize the contents of these publications in both the written dissertation proposal and its oral presentation.

2. **Writing.** The student will prepare a preliminary research proposal at least 5 pages in length, including a tentative plan for Ph.D. coursework, and distribute it to the committee members for advance review. Faculty will evaluate it on the basis of logical organization, clarity, correct English usage, and technical content. A short expository writing assignment may be required in addition, at the faculty’s discretion.

3. **Speaking.** The student will prepare and make a presentation at least 20 minutes in length to the committee on the subject of the dissertation proposal. The student will respond to questions following the presentation. The committee will evaluate the presentation on the basis of logical organization, clarity, correct English usage, and technical content.

Upon completion of the first meeting, the committee will report on the student's English competency in three areas: reading, writing and speaking. If no significant deficiencies are noted, the committee will attest to satisfaction of the Graduate School requirement. (Please inform the Graduate Program Staff Assistant at least one week in advance of the exam of the date and time. (The student does not need to be registered for classes when this exam is taken.)

Enhancement of English Competency

If, in the opinion of the majority of the committee members, significant deficiencies exist in any of the areas, the student will be required to enroll in appropriate remedial courses from the following list:

- Reading: ESL 116G
- Writing: ESL 116G, ENGL 202C, ENGL 198G, ENGL 418
- Speaking: ESL 114G, ESL 115G (Presenting: ESL 100A, ESL 312)

Attainment of a grade of "B" or better will be taken to constitute satisfactory completion of the corresponding requirement.

➢ **Comprehensive Exam**

When a candidate for a doctoral degree has substantially completed all coursework, a comprehensive examination is given. The examination is intended to evaluate the candidate’s mastery of the major, and if appropriate, the minor field and whether the candidate is prepared to embark upon his/her dissertation research (Ph.D./D.Ed.) or preparation for the final performance (D.M.A.). Before take the “comps”, a student must have satisfied the English competence requirement, must have a minimum GPA of 3.0 and must be registered. (If the exam will be taken during the summer, the student should apply for the Summer Tuition Assistance Program early in the preceding Spring semester). The student’s doctoral committee administers the exam.
In Aerospace Engineering, the doctoral committee may, at its discretion, require the candidate to complete one or more written problems in advance of the oral exam. During the oral part of the comprehensive exam, the candidate typically presents a proposal for Ph.D. dissertation research, including a literature review (if that was not covered as part of the English proficiency exam), objectives, approach, preliminary results and a plan for completion. A nominal duration for the presentation is 30-40 minutes. Following that presentation, the committee may pose questions regarding written problems (if any), the proposed research topic and the general preparation of the candidate to pursue Ph.D. research. A favorable vote of at least two-thirds of the members of the committee is required for passing. In case of failure, it is the responsibility of the doctoral committee to determine whether the candidate may take another examination. Once the comprehensive exam has been passed, the student may register for AERESP 601 (reduced tuition) in subsequent semesters.

Please inform the Graduate Program Staff Assistant at least two weeks in advance of the date, time and place of the exam. Materials need to be processed by Graduate Enrollment Services and returned in time for the exam.

After a Ph.D. candidate has passed the comprehensive examination and met the two-semester full-time residence requirement, the student must register continuously for each fall and spring semester, until the dissertation is accepted and approved by the doctoral committee.

When a period of more than six years has elapsed between the passing of the comprehensive examination and the completion of the program, the student is required to pass a second comprehensive examination before the final oral examination will be scheduled.

Final Oral Examination (“Defense”)

The final examination of the doctoral candidate is an oral examination administered and evaluated by the entire doctoral committee. It consists of an oral presentation of the dissertation by the candidate and a period of questions and responses. Questions will relate in large part to the dissertation, but may cover the candidate's entire program of study, because a major purpose of the examination is also to assess the general scholarly attainments of the candidate. The portion of the examination in which the dissertation is presented is open to the public.

Normally the final “defense” may not be scheduled until at least three months have elapsed after the comprehensive examination was passed; a more typical time is in excess of a year. A student must be registered in the semester during which the exam is taken. (If the exam will be taken during the summer, the student should apply for the Summer Tuition Assistance Program early in the preceding Spring semester.)

Both the dissertation adviser and the student are responsible for ensuring the completion of a draft of the dissertation and for adequate consultation with members of the dissertation committee well in advance of the oral examination. Major revisions to the dissertation should be completed before this examination. It is the responsibility of the doctoral candidate to provide a copy of the dissertation to each member of the doctoral committee at least two weeks before the date of the defense. The dissertation should be in its final draft at the time of the oral examination; both the content and style should be correct and polished. A favorable vote of at least two-thirds of the members of the committee is required for passing. If a candidate fails, it is the responsibility of the doctoral committee to determine whether another examination may be taken.

Please inform the Graduate Program Staff Assistant at least two weeks in advance of the date, time and place of the defense. Materials need to be processed by Graduate Enrollment Services and returned in time for the exam.
➢ **Dissertation Acceptance**

Completion of the requirements of a Ph.D. degree program entails acceptance of the dissertation, as indicated by the signatures of at least two-thirds of the doctoral committee, as well as the head of the graduate program, on the doctoral signatory page, and by its acceptance as meeting the editorial standards of the Graduate School, so that it constitutes a suitable archival document for inclusion in the University Libraries. Thus, it is to be noted that passage of the final oral examination is necessary but not sufficient for award of the degree; the dissertation must be accepted as the ultimate step for the Ph.D. and is to be made available to the public through inclusion in the University Libraries.

➢ **Residence Requirement**

There is no required minimum number of credits or semesters of study, but over some twelve-month period during the interval between admission to the Ph.D. program and completion of the Ph.D. program, the candidate must spend at least two semesters (summer sessions are not included) as a registered full-time student engaged in academic work at the University Park campus. Full-time University employees must be certified by the department as devoting half-time or more to graduate studies and/or thesis research to meet the degree requirements. Students should note that 601 cannot be used to meet the full-time residence requirement.

➢ **Continuous Registration**

It is expected that all graduate students will be properly registered at a credit level appropriate to their degree of activity. (See Registration.) After a Ph.D. candidate has passed the comprehensive examination and met the two-semester full-time residence requirement, the student must register continuously for each fall and spring semester (beginning with the first semester after both of the above requirements have been met) until the final oral examination is passed. (Students who are in residence during summers must also register for summer sessions if they are using University facilities and/or faculty resources, except for Graduate Lecturers/Researchers, who are not required to enroll for any credits unless they are first-semester graduate students, or are required to be enrolled by their graduate program.)

Post-comprehensive Ph.D. students can maintain registration by registering for credits in the usual way, or by registering for noncredit 601 or 611, depending upon whether they are devoting full time or part time to thesis preparation. Students may take 601 plus up to 3 additional credits of course work for audit by paying only the dissertation fee. Students wishing to take up to 3 additional credits of course work for credit, i.e., 590, 602, etc., with 601 may do so by paying the dissertation fee and an additional flat fee. Enrolling for either 3 credits for audit or credit will be the maximum a student may take with SUBJ 601 without special approval by the Graduate School. NOTE: Registration for additional credits above this will incur an additional charge at the appropriate tuition per-credit rate (in state or out of state). Students wishing to take more than 3 additional credits of course work must register for 600 or 611 (i.e., not for 601, which is full-time thesis preparation).

Note that the least expensive way for a student to maintain full-time status while working on research and thesis preparation is to register for 601. This clearly is the procedure of choice for international students who need to maintain status as full-time students for visa purposes.

If a Ph.D. student will not be in residence for an extended period for compelling reasons, the director of Graduate Enrollment Services will consider a petition for a waiver of the continuous registration requirement. The petition must come from the doctoral committee chair and carry the endorsement of the department or program chair.
Ph.D. Flow Chart

ENTER PH.D. PROGRAM

TAKE WRITTEN PH.D. CANDIDACY EXAM (Technical Breadth & Depth)

- Pass
- Fail 2
- Fail 1

Repeat

TAKE ORAL EXAM (at faculty discretion)

FAIL
Leave Program

PASS

*Advancement to Candidacy

CONSTITUTE DOCTORAL COMMITTEE

Candidate:
1) Reads relevant papers & summarizes contents
2) Writes a preliminary research & coursework proposal
3) Presents the proposal orally & responds to questions

Committee:
- Reviews general research direction
- Establishes general expectations
- Specifies minimum coursework
- Evaluates English proficiency by area (reading, writing, speaking)

TAKE FOCUSED ENGLISH COURSEWORK

FAIL (at faculty discretion)

PASS ("B" or better)

TAKE PH.D. COURSEWORK & INDEPENDENT STUDY

PERFORM THESIS RESEARCH

SCHEDULE COMPREHENSIVE EXAM

TAKE COMPREHENSIVE EXAM

Pass: Enroll in AERSP 601 the following semester

Committee:
- Verifies student capabilities
- Reviews suitability of research topic, proposed approach, progress
- Establishes specific expectations

DEFEND PH.D. THESIS
Ph.D. Progress Sheet

<table>
<thead>
<tr>
<th>1</th>
<th>Candidacy Examination</th>
<th>In Aerospace Engineering the Candidacy Exam is given each Fall (October) and Spring (February) Semester. Each Ph.D. program enrollee is required to take the examination during his/her second semester following enrollment; however, those who have been out of an academic environment for a year or more immediately preceding their enrollment may petition for a one-semester delay in taking the examination. A memo from the student’s advisor to the Director of Graduate Studies requesting this deferral must be submitted at least two weeks before the scheduled candidacy exam. The advisor needs to indicate why the deferral is being requested. Student must be registered for class in order to take the exam. Results will be given within two weeks of exam by the advisor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Committee Chair:</td>
<td>Committee will consist of four or more active member of the Graduate Faculty, which includes at least two faculty members in the major field, and one Outside Field Member. The dissertation advisor must be a member of the doctoral committee and usually (but is not required to) serve as chair. If the candidate has a minor, that field must be represented on the committee. A person not affiliated with Penn State who has particular expertise in the candidate’s research area may be added as a special member, upon recommendation by the head of the program and approval of the graduate dean. A special member is expected to participate fully in the functions of the doctoral committee. If the special member is asked only to read and approve the doctoral dissertation, that person is designated a special signatory of the dissertation. You will be provided with a Doctoral Committee Appointment Signature Form so that all information can be gathered and completed for signatures. Please be in contact with the Graduate Program Staff Assistant for more information. The Committee form must be completed and approved by Graduate Enrollment Services (GES) before any further steps can be taken towards the Ph.D. degree.</td>
</tr>
<tr>
<td>3</td>
<td>English Proficiency Exam Date:</td>
<td>The committee should be convened as soon as practically (normally within a semester upon passing the candidacy Exam) to establish general student research direction and specific coursework requirements. As a natural part of this process, the committee will formally assess the student’s English proficiency; this includes native and non-native English speaking students. The goal at this stage is to identify students having significant deficiencies in their command of English. In addition to informal discussions, the assessment will consist of the following elements: reading, writing and speaking. Once the committee has agreed upon a day and time for the exam the student needs to inform the Graduate Program Staff Assistant at least two weeks in advance so that the needed internal form can be prepared and a room be scheduled.</td>
</tr>
<tr>
<td>4</td>
<td>Comprehensive Examination Exam Date:</td>
<td>When a Ph.D. candidate has substantially completed all course work, a comprehensive examination is given. This exam is intended to evaluate the candidate’s mastery of the major (and if appropriate, minor) field(s). Before taking the “comps” a student must have satisfied the English</td>
</tr>
</tbody>
</table>
competency requirement, must have a minimum GPA of 3.0 and must be registered. (If the exam will be taken during the summer, the student should apply for the Summer Tuition Assistance Program early in the preceding Spring semester.) Student’s doctoral committee administers the exam.

Once the committee has agreed upon a day and time for the exam the student needs to inform the Graduate Program Staff Assistant at least two weeks in advance so that the needed paperwork can be prepared and sent to GES for approval and a room be scheduled.

Students will be registered for AERSP 601 after completion of exam. (If coursework is substantially completed)

Student must be continually registered until after final oral exam.

5 Final Oral Examination (“Defense”)

Exam Date:	The final examination of the doctoral candidate is an oral examination administered and evaluated by the entire doctoral committee. It consists of an oral presentation of the dissertation by the candidate and a period of questions and responses. Questions will relate in large part to the dissertation, but may cover the candidate’s entire program of study, because a major purpose of the examination is also to assess the general scholarly attainments of the candidate. The portion of the examination in which the dissertation is presented is open to the public.
Time:	A student must be registered in the semester during which the exam is taken. (If the exam will be taken during the summer, the student should apply for the Summer Tuition Assistance Program early in the preceding Spring semester.)
Place:	Once the committee has agreed upon a day and time for the exam the student needs to inform the Graduate Program Staff Assistant at least two weeks in advance so that the needed paperwork can be prepared and sent to GES for approval and a room be scheduled.

The student will also need to provide the dissertation title and abstract to the Graduate Program Staff Assistant at least two weeks in advance so that notice may be sent for the presentation of the dissertation.

6 Dissertation

| Two bound copies of the dissertation is required. One copy for your committee chair and one copy for the Department. |

For specific requirements and guidelines for the preparation of the dissertation, visit http://www.gradschool.psu.edu/current-students/etd/.

7 Exit Forms

| Please see Graduate Staff Assistant for appropriate forms. |

Please complete before you leave PSU.
RESEARCH AREAS & FACILITIES

Primary Research Areas
As illustrated in the figure on the following page, the Department provides coursework and research projects in the following areas of emphasis: analytical/computational fluid dynamics, aeroacoustics, experimental fluid dynamics, flight science and vehicle dynamics, dynamics and control, rotorcraft engineering, structural dynamics/structures and materials, space propulsion, and turbomachinery. Areas within these specializations include flow instabilities and turbulence, advanced airfoil design, rotorcraft dynamics, spacecraft dynamics, advanced composite structures, smart structures, advanced electric propulsion, and heat transfer.

Analytical / Computational Fluid Dynamics
Fast algorithms; grid generation; hypersonic flow; development of inverse design optimization methods; development of algorithms for massively parallel computers; turbulence; hydrodynamic stability; aeroacoustics; computations of large-scale turbulence structure in SCRAMJET combustors and in advanced nozzle designs; computations of various turbomachinery flowfields.

Aeroacoustics
Computational aeroacoustics (CAA) applied to jet noise, fan inlet and exhaust noise, acoustic liners, cavity noise, acoustic scattering, rotorcraft noise and wind turbine noise; semi-analytic predictions of jet noise; experimental studies of supersonic jet noise including nonlinear propagation effects and centrifugal fan noise.

Experimental Fluid Dynamics and Aeroacoustics
Measurements of the mean flow and turbulence structure in supersonic jets, PIV measurements in numerous flowfields including swirling jets, development of radar acoustic sounding system for the measurement of wake vortices.

Flight Science and Vehicle Dynamics
Analytical, computational and experimental programs in various areas including -aircraft design, performance, stability and control; airfoil design and analysis; low Reynolds number aerodynamics; wing-body aerodynamics, subsonic/hypersonic aerodynamics; aircraft operation; advanced concepts in V/STOL rotor control; propeller/stator interactions; rotorcraft aeromechanics.

Dynamics and Control
Spacecraft dynamics and control; astrodynamics; use of generalized perturbation methods for various problems of orbital motion.

Rotorcraft Engineering
Active control of rotor and drivetrain vibration and stability; modeling and characterization of elastomeric materials for dampers and bearings; dynamics of aeroelastically tailored helicopter and tiltrotor blades; computational aeroacoustics and aeroelasticity of rotors using parallel computers; dissimilar rotor systems for reduced vibration and noise; bearingless rotor optimization; rotorcraft health and usage monitoring.

Structural Dynamics / Structures and Materials
Analysis of flexible space structures; aeroelasticity problems in V/STOL aircraft; advanced composite materials; spacecraft dynamics and control; development of techniques for improved dynamic analysis of damped structures. Aerospace structures and advanced composite materials; experiments and analysis of filament wound composite structures; smart structures having embedded sensors and actuators.

Space Propulsion
Rocket propulsion; instabilities in solid propellant combustion; microwave-heated advanced propulsion concepts; Monte-Carlo computations of advanced inlet and nozzle designs.
Turbomachinery
Aerothermodynamics of turbomachinery; convective heat transfer; short duration wind tunnel techniques and fast response instrumentation; turbulent flow; turbulence modeling; computations and measurements of three-dimensional turbulent flow in compressors and turbine rotors; aeroacoustics of turbomachinery and non-intrusive flow and thermal diagnostics in propulsion systems.
Computational and Experimental Facilities

Computer Facilities
Penn State has a wide array of state-of-the-art computational facilities available to aerospace engineering students, including parallel computing clusters, computer labs, and specialized equipment. These resources are distributed around campus, and are managed at a campus level by Information and Technology Services (ITS), in the College of Engineering by Electronics and Computer Services, and in the Department of Aerospace Engineering. Personal computers with both Windows and Linux operating systems are available in the student computer labs around campus.

The Aerospace Engineering Computer Lab, Room 131 Hammond Building, contains several Windows computers. Most of the computer labs are outfitted with laser printers as well. Accounts for using these computers are often established in various aerospace engineering classes. If you need accounts set up for the computers or the door card reader for the Aerospace Engineering Computer Lab, please see Mr. Mark Catalano, Department IT Manager. Mr. Catalano’s office is located in Room 226 Hammond Building, or Kirk Heller, Systems Administrator, in 48 Hammond Building.

The Aerospace Engineering student computer lab has recently been upgraded with numerous computers and peripherals. A new Aerospace Computing Cluster Facility came on line during the fall of 2007. All of the major computer clusters have been relocated to Room 51 Hammond, which provide cooling and power for up to 16 racks of high density computer clusters. The computer clusters are funded through individual research projects – so graduate students have access to this facility based upon their need, with their research advisor’s approval.

The PSU Information Technology Services (ITS) regularly holds classes and/or information sessions on operating systems and popular systems and application software available on the various computer platforms. Information regarding the ITS and its services may be obtained from any of the campus student computer labs or at http://its.psu.edu Lab operators are often stationed in the computer labs to help with student computer needs. They are an excellent source of information if you have trouble with computer hardware/software, or just need information.

What follows is a summary list of popular software used by aerospace engineering students, grouped by type of application. This is not an all-inclusive list; rather, it is intended to give the student a feel for some of the software packages available for use. Detailed information on the software available can be obtained from the ITS, computer labs, or the lab operators. You could also use the world-wide web: http://its.psu.edu.

Computer hardware and software can be purchased at the Penn State Computer Store (Willard Building) or the Penn State Bookstore.

Programming
Programming software is used to create your own programs, often to solve engineering problems. Various programming languages, including FORTRAN, C, C++, MATLAB, and BASIC are available on most computer platforms. Ready-to-use software libraries, such as IMSL, LINPACK, and EISPACK, are available for student use through the network, providing specific code addressing typical engineering problems.

Word-processing
Word-processing software can be used to write, edit, and print reports, letters, documents, resumes, and theses. Microsoft Word is available on the personal computers.

Spreadsheets
Spreadsheet software is essentially used for dealing with numerical data. Data can be manipulated, analyzed, and plotted in a spreadsheet program. EXCEL is a spreadsheet software package available on the personal computers.

Computer Aided Design (CAD)
Computer aided design (CAD) software allows the user to build and manipulate a structure on a computer. Some advanced CAD packages, such as Pro Engineer on the PCs perform static and dynamic structural analysis and optimization. A simpler, more straightforward CAD package is AutoCAD2005, Solidworks Education edition, available on the personal computers in 131 Hammond Building.
Presentations
Presentation software can be used to create, edit, and print slide shows, handouts, and speeches. PowerPoint presentation software is available on the personal computers.

Math Software
Several math software packages are available to solve simple and complex mathematical problems. MathCAD is a symbolic math software processor. Matlab is available on the personal computers.

Software List on PCs in 131 Hammond
- WINDOWS XP
- AUTOCAD 2005
- MS OFFICE 2003
 - Word
 - PowerPoint
 - Access
 - Excel
- MATLAB 7.0
- VISUAL Studio 2003.net
- Norton Antivirus Corporate Editor
- Satellite Tool Kit 7.1.1
- PRO ENGINEER Wildfire
- EXCEED 7.0
- Fluent Gambit Tgrid
- SolidWorks Education Edition 2005 SP3.1
- Fieldview Fortran (Intel/g 95)

Internet Access
- Netscape 7.1
- Internet Explorer 6.0
- Firefox 1.5

Experimental Facilities
Numerous wind tunnels
Low-turbulence subsonic wind-tunnel with six-component strain gauge balance (3.25 x 5 foot test section); low-turbulence boundary layer tunnel (2 x 3 feet test section); anechoic open jet wind tunnel (28” x 72” test section); supersonic free shear layer facility (2 x 5 inch test section); convective heat transfer tunnel with real-time color image processing; compressed air flow facility (300-psi reservoir); several probe calibration jets, limited access to supersonic wind tunnel (6 x 6 inch test section).

Water channels/Water Tunnel
Laminar flow water channel (1.5 x 2.5 foot test section); limited access to the Garfield Thomas Water Tunnel of the Applied Research Laboratory.

Aeroacoustic facilities
A semi anechoic chamber and adjoining reverberation room. A large anechoic chamber with forward flight simulation. A gas mixture and heated jet facility to simulate jet engine exhausts for aeroacoustic studies.

Structures research laboratory
A high temperature bi-axial tension/torsion testing facility; an ultrasonic inspection system; hydraulic testing machine; structural dynamics lab; scanning laser vibrometer.

Composites materials laboratory
Autoclave (3 foot diameter x 7 foot length); a computer-controlled filament winding machine; a pultrusion machine; a braiding machine for composite materials manufacturing.
Space propulsion facilities
High vacuum tank facility for low-density flow; unsteady propellant combustion facility; variable power microwave generator and propulsion facility; spectrometer and a CW Nd laser for space propulsion research

Several large turbomachinery facilities
Axial flow turbine; linear turbine cascade facility; 6’ diameter rotor-rig.

Other experimental facilities include
Several laser Doppler anemometers including a subminiature semiconductor model; two particle image velocimeter systems; an ATC/510G flight simulator; a thermal analysis system; an acoustic emission system; reflection polariscope used in material fabrication and characterization

Duties for Department’s Lab and Computer Coordinators

LABORATORY DIRECTOR
The Laboratory Director assists the Aerospace faculty, staff, and students as needed in all technical aspects of instructional, academic and research-related laboratory activities. This position is presently filled by Mr. Richard Auhl, located in 226 Hammond Building. His areas of responsibilities include but are not limited to the following:

- Assist the Department Head with the implementation of department management strategies, staff software training, information systems development and strategic planning.
- Assist the faculty with undergraduate laboratory course instruction. (AERSP 305W)
- Coordinate the laboratory facility and department space allocation.
- Provide engineering and fabrication advice or assistance to faculty and students involved in project activity.
- Supervise the part-time laboratory assistants involved in general department maintenance.
- Serve as the primary contact person for the Dean’s Office with regard to department space and facilities management.
- Coordinate and supervise all Machine Shop activities.
- Serve as the laboratory safety officer.

IT MANAGER
The IT Manager assists the Aerospace faculty, staff, and students as needed in technical aspects of computer and general electronic systems. This position is currently filled by Mr. Mark Catalano, located in 226 Hammond Building. His primary responsibilities are listed below in order of their importance to the Department:

- Maintain and support all computer and network related equipment in the Department.
- Responsible for upgrading the hardware and software of all computers in Department.
- Provide purchasing support to Department on computer/electronic related equipment.
- Diagnose electronics problems as they arise and repair or replace equipment.
- Responsible for the installation of new electronic equipment in the Department.
- Responsible for maintaining the card reader system in computer lab.
- Provide classroom support for A/V equipment when student aid is not available.
- Supervise part-time students working in the electronic shop.

Please feel free to contact Mr. Auhl or Mr. Catalano if you have any questions concerning Department laboratory facilities.
Description of Faculty Research Interests

ENGINEERING DESIGN, REMOTE SENSING & SPACE SYSTEMS, SPACE PROPULSION & PHYSICS
Sven Bilen, Ph.D., University of Michigan
Professor and Head of SETAPP

Research interests focus on electrodynamic-tethers, measurements of space plasmas and environments, spacecraft-plasma interactions, plasma diagnostics, engineering design and entrepreneurship, innovative design, software-defined radio, systems.

AEROACOUSTICS, COMPUTATIONAL & EXPERIMENTAL FLUID DYNAMICS, ROTORCRAFT ENGINEERING
Kenneth S. Brentner, Ph.D., University of Cambridge, U.K.
Professor

Research interests focus on rotorcraft and aircraft aeroacoustics, computational aeroacoustics, fluid mechanics, computational fluid dynamics, and high performance computing. Specific areas of research include rotor source noise prediction, prediction and characterization of rotorcraft noise in maneuvering flight, prediction of landing gear noise and other types of airframe noise. Recent research activities include the development of the rotorcraft noise prediction code PSU-WOPWOOP which is able to predict noise from a rotorcraft with multiple rotors in both steady and maneuvering flight; prediction of noise generation and propagation from wind turbines; acoustic scattering for aircraft noise, including ducted rotors; and the development of a component based landing gear noise prediction system.

AIR-BREATHING PROPULSION, COMPUTATIONAL & EXPERIMENTAL FLUID DYNAMICS
Cengiz Camci, Ph.D., Von Karman Institute for Fluid Dynamics, Belgium
Professor

Research interests focus on studies in fluid mechanics and heat transfer in turbomachinery systems. Specific areas of research include aerodynamic loss generation mechanisms, secondary flows, endwall contouring, turbulent boundary layers, film cooling of high pressure turbine blades, turbine airfoil design, wall heat flux measurements in turbines, non-intrusive measurement techniques (Laser Doppler anemometry LDA and particle image velocimetry PIV) applied to rotating machinery and digital image processing of liquid crystal covered surfaces for basic heat transfer studies. Recent research activities include the investigation of radar antenna aerodynamics, turbine tip leakage reduction, tip cooling, turbine intra-stage coolant ejection, heat transfer studies using an image processing based liquid crystal technique, elliptical pin-fins, oscillating fins for internal cooling passages, tip heat transfer in a linear cascade, trailing edge coolant injection and the implementation of a stereoscopic PIV in the rotor of an axial flow turbine. A new facility for the aero-mechanical testing of helicopter main rotor blades including icing is under development. Large scale computation of three dimensional unsteady and turbulent flow systems including rotational effects is currently being performed using a 25 processor computer cluster.

STRUCTURAL DYNAMICS & ACTIVE STRUCTURES
Stephen Conlon, Ph.D., Pennsylvania State University
Senior Research Associate and Associate Professor

Research interests include; acoustic signatures/noise and vibration control of underwater systems, development of novel experimental procedures for radiated power assessments of underwater structures, space and ground vehicle system/structure health monitoring, and the structural design/control of large based antennas.

FLIGHT SCIENCE, ROTORCRAFT ENGINEERING, VEHICLE DYNAMICS & CONTROLS
Joseph F. Horn, Ph.D., Georgia Institute of Technology
Professor

joehorn@psu.edu
General research interests are in the areas of flight dynamics, automatic flight control systems, guidance and navigation, handling qualities, and flight simulation and modeling. Current research activities have focused on control system design and flight simulation for rotorcraft and rotorcraft UAV applications. Specific research topics include envelope protection systems, damage mitigating control, nonlinear adaptive control, integration of flight controls and health and usage monitoring systems, control design for compound helicopters, simulation and control of helicopter shipboard operations, autonomous control of UAV’s, and coupled flight dynamics and acoustics simulation of rotorcraft.

AUTONOMOUS FLIGHT & UAVs, VEHICLE DYNAMICS & CONTROLS
Eric N. Johnson, Ph.D., Georgia Institute of Technology
Professor

Professor Johnson performs research in unmanned aircraft fault-tolerant guidance/control, aided inertial navigation, and autonomy. This work has included the first air-launch of a hovering aircraft, automatic flight of helicopters/airplanes with simulated frozen actuators, and vision-based air-to-air tracking. His most recent work has included automatic low altitude high speed flight of helicopters, indoor and outdoor vision-aided inertial navigation, and methods for sensing and avoiding other aircraft. The mission of this work is to enable unmanned aircraft systems to contribute to society.

AUTONOMOUS FLIGHT & UAVs, VEHICLE DYNAMICS & CONTROLS
Jack W. Langelaan, Ph.D., Stanford University, California
Associate Professor and Director of Graduate Studies

Research interests include sensor fusion, estimation, trajectory planning and control of autonomous systems. Work involves algorithm development, simulation and hardware experiments.

STRUCTURAL DYNAMICS & ACTIVE STRUCTURES
George A. Lesieutre, Ph.D., University of California, Los Angeles
Professor, COE Associate Dean for Research and Director of Center for Acoustics and Vibration

General research interests are motivated by aerospace vehicle applications, and include materials and controls for precision structures, vehicle dynamics and control, and systems engineering. Present activities address concepts for morphing aircraft structures, the dynamic behavior of elastomeric components in rotorcraft applications, piezoelectric actuators for structural control, energy harvesting using piezoelectric materials, and the nonlinear dynamics of particle dampers. Other research addresses the dynamic analysis of damped structures, structural composite materials with improved intrinsic damping, semi-active vibration control using tunable transducers and shunted piezoelectrics, shape determination for gossamer space structures, structural condition monitoring, and bio-inspired control. Experiments are an important part of much work, and improved measurement methods are also of concern.

INTELLIGENT SYSTEMS, ROBOTICS, COMPUTATIONAL SCIENCE, AND SOFTWARE
Lyle N. Long, D.Sc., Aerospace Engineering, George Washington University
Distinguished Professor of Aerospace Engineering and Mathematics, Director of Computational Science Graduate Minor, in charge of Undergraduate Minor in IST for Aerospace (ISASP)

Research interests are in a broad range of computing and information technology in both computational physics (e.g. CFD and Monte Carlo) and intelligent systems (e.g. neural networks and cognitive architectures) for ground and air-based mobile robots. Dr. Long teaches courses in advanced computer programming, software engineering, and computational methods. He also holds joint appointments in Acoustics, Bioengineering, Computer Science and Engineering, Neuroscience and Mathematics. For information on IST minor please visit: http://www.personal.psu.edu/lnl/ist/.
FLIGHT SCIENCE, VEHICLE SYSTEMS ENGINEERING
Mark D. Maughmer, Ph.D., University of Illinois
Professor

Research interests are in the areas of aerodynamics, aircraft design, and stability and control. Current activities deal with the design and analysis of airfoils, low Reynolds number aerodynamics, wing planform optimization, uninhabited air vehicles, wind turbines, and experimental aerodynamics.

AEROCOUSTICS, EXPERIMENTAL & COMPUTATIONAL FLUID DYNAMICS
Dennis K. McLaughlin, Ph.D., Massachusetts Institute of Technology
Professor Emeritus

Research interests include experiments on a variety of fluid dynamic and aeroacoustic problems. Experiments are being conducted in the anechoic chamber with forward flight capability on a number of aeronautical applications. Most prominent are the experiments on high speed (transonic and supersonic) jets of various geometries. In these flows helium/air mixtures are used to simulate the high temperature exhausts of the jets. In addition, wind tunnel experiments and flight tests are being conducted as part of the development project for vertical takeoff aircraft using ducted lift fans.

ASTRODYNAMICS, VEHICLE DYNAMICS & CONTROLS
Robert G. Melton, Ph.D., University of Virginia
Professor and Director of Undergraduate Studies

Astrodynamics, spacecraft dynamics and control; trajectory optimization, perturbation analysis of low-thrust orbital motion, orbit determination, dynamics and control of multi-body spacecraft.

SPACE PROPULSION & PHYSICS
Michael M. Micci, Ph.D., Princeton University
Professor

Research interests centers on rocket propulsion. Both experimental and analytical work is being conducted on the oscillatory burning of solid and liquid rocket propellants and how it affects rocket motor instabilities. Work is also being conducted on advanced propulsion concepts, in particular the heating of propellant gases to high temperatures by the absorption of microwave radiation. Experimental characterization using optical diagnostics of nozzle flows expanding into a vacuum is being undertaken.

AEROCOUSTICS, COMPUTATIONAL & EXPERIMENTAL FLUID DYNAMICS
Philip J. Morris, Ph.D., University of Southampton
Boeing A.D. Welliver Professor

Dr. Morris' research centers on the modeling and prediction of unsteady incompressible and compressible flows. The work is primarily analytical and computational. Current research projects include: the prediction of noise from high-speed jet flows; the prediction of airframe noise; the simulation of blast loading of complex structures; the prediction of contaminant dispersion in urban environments; wind turbine noise prediction; the simulation of aeroelastic phenomena; prediction of the nonlinear propagation of identification using near and far field arrays. Each of these analytical or computational studies is linked closely with experimental studies at Penn State, NASA Langley and Glenn Research Centers, The Boeing Company, GE Aviation and GE Energy, Sandia Laboratories, and the National Renewable Energy Laboratory.
Jose L. Palacios, Ph.D., The Pennsylvania State University
Assistant Professor

Research interests focus on aircraft and wind turbine icing, as well as experimental test and evaluation of active rotor blades. Specific areas of on-going research related to aircraft icing are engine ice crystal melting and accretion, experimental ice shape acquisition for model validation and aerodynamic performance degradation quantification, optimization and testing of low-power ice protection systems, and experimental evaluation of ice protective coatings. Research related to active structures includes design and centrifugal testing of active rotor systems instrumented with trailing edge flaps, micro trailing edge effectors, centrifugal power generation prototypes, and mechanical de-icing systems.

Sven Schmitz, Ph.D., University of California, Davis
Associate Professor

Puneet Singla, Ph.D., Texas A&M University
Associate Professor

Research interests include astrodynamics, data driven modeling, optimal estimation & control, uncertainty quantification and dynamic sensing.

Edward C. Smith, Ph.D., University of Maryland
Professor and Director of the Vertical Lift Research Center of Excellence

Research interests include analytical modeling and experimentation focused on innovative applications of advanced composite structures to aerospace vehicles. Recent research has concentrated on the development of improved methods for the analysis of composite box-beams and rotor blade spars, and the aeroelastic and aeromechanical tailoring of helicopters with composite rotor blades. Research interests related to helicopter and tilt-rotor dynamics also include blade and airframe vibration reduction, gust response suppression, rotor and rotor-body stability augmentation, modeling of bearingless rotors, and helicopter flight simulation. Material damping of advanced composites and elastomers is also of particular interest.

David B. Spencer, Ph.D., University of Colorado
Professor

Research interests include astrodynamics, high accuracy orbit determination, space debris research, spacecraft trajectory optimization, spacecraft dynamics and control, interplanetary trajectory analysis, and space systems engineering.
WIND ENERGY
Susan Stewart, Ph.D., Georgia Institute of Technology
Senior Research Associate

AUTONOMOUS FLIGHT & UAVs
Alan R. Wagner, Ph.D., Georgia Institute of Technology
Assistant Professor

Research interests include UAV control, social robotics, human-machine interaction, game theory, trust and ethics. His work has focused on the development of a framework for social action selection by robots and UAVs based on social psychological theories and behavioral modeling of human partners. Application areas include search and rescue, humanitarian missions, and healthcare. Recent research activities include examinations of the factors that cause people to overtrust robots and UAVs, trust repair by these systems, the use of deep learning to generate experiential representations of the visual environment, and the creation and use of behavioral models by systems to predict the needs and behavior of a human teammate.

MULTIFUNCATIONAL & NANO-MATERIALS
Namiko Yamamoto, Ph.D., Massachusetts Institute of Technology
Assistant Professor

Research interests include experimental studies of materials and structures engineered at the nano and micro level, mostly nano-composites, for aerospace applications. Nanocomposites consist of nanoparticles (carbon, ceramic, metal, etc.) embedded within matrices (polymers, metals, ceramics, etc.). Organization of these nanoparticles within matrices can be tailored for optimized performance (mechanical, electrical, thermal, etc.), and/or for effectively interdisciplinary coupling (thermomechanical, electromechanical, thermoelectrical, etc.). These novel materials can provide solutions to the tight requirement for the next-generation aerospace vehicles and rotorcrafts, energy and power devices, and biomedical applications. Research goals will be to obtain knowledge on multi-scale structure-property relationship and to establish scalable manufacturing methods.
RESEARCH CENTERS AND PROGRAMS IN ENGINEERING

Center for Acoustics and Vibration
Research in acoustics and vibration is one of Penn State's enduring strengths. The steady growth of research in acoustics and vibration in recent years establishes the Penn State program as the largest and most respected of its kind at a major research university. The Center for Acoustics and Vibration, housed in the Penn State College of Engineering, ensures the continued excellence of acoustics and vibration research in the 1990's.

The CAV has three missions:
 - to strengthen basic and applied research in related engineering areas;
 - to foster graduate education in acoustics and vibration engineering; and
 - to provide a base for technology transfer to industry.

The center consists of faculty, graduate students and staff in nine laboratories throughout the College of Engineering and ARL. These laboratories perform both disciplinary and cross-disciplinary research in areas related to acoustics and vibration. Areas of research activity include:

- Active control
- Adaptive structures
- Flow-induced noise
- Machinery prognostics and condition monitoring
- Propagation and radiation
- Rotorcraft acoustics and dynamics
- Structural vibration and acoustics

Contact Person
Dr. George A. Lesieutre
Director, Center for Acoustics and Vibration
The Pennsylvania State University
229A Hammond Building
University Park, PA 16802
Telephone (814) 863-0103
Email: g-lesieutre@psu.edu

Center for Combustion, Power, and Propulsion
With the support and guidance of the National Aeronautics and Space Administration, Penn State has established a Center for Combustion, Power, and Propulsion. This is the result of a long history of a commitment to excellence in space-related engineering research and education. Its mission is to enhance and broaden the capabilities of America's engineering community to meet the needs of the expanding space program.

The Center is focusing on five major areas of research: Chemical Propulsion, Electric/Nuclear Propulsion, Advanced Propulsion Concepts, Diagnostics, and Materials.

The Center is housed primarily in the Departments of Aerospace Engineering, Mechanical Engineering and Engineering Science and Mechanics in the College of Engineering, with additional programs in other Engineering departments as well as in the Colleges of Science and Earth and Mineral Science.

Financial support for graduate work is available through either NASA Traineeships or Research Assistantships. NASA trainees receive stipends plus tuition and fees. Stipends for assistantships are competitive. Students involved in Center activities have an opportunity for direct interaction with NASA installations.

Contact Person
Dr. Dan Haworth
Director, the Penn State Center for Combustion, Power, and Propulsion
233 Research East
The Pennsylvania State University
University Park, PA 16802
Phone: (814) 863-6269
Email: dch12@psu.edu
Penn State Vertical Lift Research Center of Excellence

The Penn State Vertical Lift Research Center of Excellence (VLRCOE) is one of only three university research centers in the country focused on technical problems specific to rotary-wing and vertical flight aircraft. Funded by the US Army, US Navy and NASA, the Penn State Vertical Lift Research Center involves facilities, faculty and students from the Departments of Aerospace Engineering, Mechanical Engineering, and Engineering Science and Mechanics. Research thrust areas include rotor and vehicle dynamics, composite and smart structures, flight simulation and controls, cabin noise, rotor noise, rotor and airframe aerodynamics, drivetrain technologies, unmanned air vehicles, and condition-based maintenance. In addition to core Army and Navy support, many VLRCOE research projects are supported directly by the rotorcraft industry (e.g. Bell, Boeing, Sikorsky, Kaman, Lord Corp, Timken Corp, Goodrich, etc.), as well as NASA and other federal agencies. Over forty full-time graduate students are centrally located with our laboratories in brand new office space in Engineering Unit C. Our VLRCOE faculty and students are also actively involved in a wide range of educational programs, educating students from pre-school to graduate school and beyond. Vertical Lift Fellowships are available to provide additional financial support for outstanding graduate students. Undergraduate research assistantship positions are also available for highly qualified undergraduate engineering students.

Website: http://www.engr.psu.edu/vlrcoe/index.htm

Contact:
Dr. Edward C. Smith
Director, Vertical Lift Research Center of Excellence
The Pennsylvania State University
231D Hammond Building
University Park, PA 16802
Telephone: (814) 863-0966
Email: ecs5@psu.edu
APPENDIX A
DEPARTMENT OF
AEROSPACE ENGINEERING

Development of a
“Six-S” Laboratory Work Environment

Prepared for the Aerospace Faculty, Graduate Students
and Undergraduate Students
INTRODUCTION

In recent years, with the growing enrollment and increased student project activity, Penn State Aerospace Engineering has experienced difficulty maintaining the organization and cleanliness of many areas of the Department allocated space. As a solution to this it has been suggested by the Industrial Professional Advisory Committee (IPAC) that we adopt what is known in industry as a “Five-S” philosophy within our Department laboratories. We have added an addition S to emphasize our commitment to maintain a SAFE working environment in all labs.

“Five-S” is one of the “lean manufacturing” tools developed in Japan in the 1980’s and currently utilized by companies worldwide to organize their workspace and instill the discipline required to maintain a high degree of organization. Based mostly on common sense, the principles underlying Five-S are actually very simple; however, until the Five-S nomenclature became popular, many businesses ignored these basic concepts. We strongly encourage the implementation of this philosophy in all of our laboratory areas, specifically in our shop and instructional laboratories.

The original Five-S’s are derived from the first letter of five Japanese words, and were chosen as a means of remembering the important elements of this philosophy. In the west, we have adopted several corresponding translations that maintain the Five-S framework.

<table>
<thead>
<tr>
<th>Japanese:</th>
<th>English Translation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seiri</td>
<td>to Sort</td>
</tr>
<tr>
<td>Seiton</td>
<td>to Set in Order / or Straighten</td>
</tr>
<tr>
<td>Seiso</td>
<td>to Shine</td>
</tr>
<tr>
<td>Seiketsu</td>
<td>to Standardize / or Simplify</td>
</tr>
<tr>
<td>Shitsuke</td>
<td>to Sustain / or exercise Self-discipline</td>
</tr>
</tbody>
</table>
SORT The first step of this process is to decide what things are necessary to have in each specific work area. Everything must be sorted on the rubric of what will be used in the next month or two. In a personal office space it might be more productive to follow a 24 or 48 hour rule. Items should be “staged” in a central holding area in one of three possible categories (keep, store, or discard). Less frequently used items should be moved to storage or discarded. If multiple quantities of items exist, it should be determined how many of each is really needed. Most people will have to fight the temptation to keep things because they “may be useful someday”. During this sorting process, broken equipment and tools should be repaired or disposed of. The amount of work surfaces needed to perform your tasks should also be considered. The final goal of this step is to ensure that only those items that are needed to do the job remain in the most accessible locations.

SET IN ORDER The second step of the process is to decide how to lay out the new workspace and where the important items should be located to promote the highest efficiency and effective retrieval. The overriding principle of this step is based on the familiar adage “a place for everything and everything in its place.” Often, floors are painted to outline work areas, shadow boards are installed to hold tools, and modular shelving or mobile cabinets are used for trash cans and cleaning supplies. Commonly used tools are made readily available, signs are used to inform people of designated locations for items, and shelves and books are labeled. In general, the more visually based the organization; the easier it will be to find and replace things. Critical elements of equipment and machinery, such as the piping and valves, should be clearly identified.

SHINE The third step of the process is to thoroughly clean all of the work areas, and then continue to perform a daily follow-up cleaning. Workers are encouraged to keep things clean and polished after each use by taking pride in a clean and clutter-free work area. In a very real sense, each person should take ownership of the equipment and workspace they are working in. During the cleaning process it is particularly easy to inspect the machines, tools, equipment and supplies in an effort to identify potential problems. Each work area should develop a checklist of daily cleaning activities in an effort to make cleaning a high priority. Maintaining a laboratory’s appearance will not only increase efficiency, but also ease the pressure of preparing for VIP visits and encourage new project funding from research sponsors.

STANDARDIZE The forth step is perhaps the least obvious of the process. It involves defining an acceptable work ethic and standardization of work practices within a given area. Each worker should be involved in the development of these standards. In the words of Henry Ford, "every well thought-out process is simple" and each person should be looking for the best way to do things. Once this is determined, these methods should be documented to help future workers perform the same tasks efficiently. It is helpful to schedule a periodic review of your laboratory practices with other researchers to help identify areas to improve. It is important to have a work structure that will support the new practices listed in the first three steps, and help turn them into standard work habits. As more experience is gained in a work area, the standards should be updated and modified to keep them as simple as possible. Old work habits will need to be avoided if this philosophy is going to succeed. Each person must help to set a standard of cleanliness and organization in the labs and remind others of safe work habits.

SUSTAIN The final step in the process is to repeatedly persevere with the four basic procedures listed above. It takes the continued commitment and dedication of everyone in the labs to maintain a philosophy like this.

SAFETY Within this Department we want to be sure to emphasize the need to do everything with safety in mind. A Sixth “S” is therefore added to our rubric to remind us of this important emphasis.
YOUR COMMITMENT IS CRITICAL

a. As a student in Aerospace Engineering, we ask for your commitment to the Six-S philosophy and your help in establishing the standards of this new work environment within our Department.

b. We also ask for your commitment to inspire pride and adherence to the standards established in each work area.

c. Finally we ask for your commitment to educate other students about maintaining standards and helping us create a culture that implements these ideas in our everyday life at Penn State.

This is clearly an ongoing improvement process that will lead to less waste and an improved work environment for all of us. The Department will support this effort by initiating periodic reviews of each work area, implementing a formal system for monitoring the results, and applying a portion of this activity toward student project and research related grades.

Please inform the Laboratory Director, Rick Auhl, of any equipment or supplies that are needed to support this organizational effort within your area of research.

WHAT DO WE HAVE TO GAIN?

1) Improved laboratory safety and quality of workmanship.
2) Improved student, faculty, and staff morale.
3) Improved work efficiency and reduced time wasted searching for tools and equipment.
4) Increased pride in our department’s resources and facilities.
5) An improved department image regarding our capability and research effectiveness.
6) Increased available workspace and decreased storage costs.
7) Simplified laboratory work environments and standardization of work practices.
8) Reduced equipment damage and machine down time.
9) Establishment of good student work habits in preparation for industry employment.
DEPARTMENT OF
AEROSPACE ENGINEERING

SAFETY MANUAL

Prepared for the Aerospace Faculty, Graduate Students
and Undergraduate Students
I, ____________________________________, have read the Aerospace Engineering Department Manual on Safety and agree to follow all safety procedures, as described in the guide, when using laboratories and equipment located in the Aerospace Engineering Department. I recognize it is solely my responsibility not to endanger myself and/or other students, staff, or faculty through unsafe practices.

__
Signature

Date

Return this form to the Aerospace Engineering office in 229 Hammond Building
SAFETY MANUAL

Aerospace Engineering Department

Contents

I. Introduction ... 61

II. Safety Regulations .. 61

III. Safety in the Laboratory ... 62
 A. Undergraduates in the Laboratory .. 62
 B. Graduate Students in the Laboratory ... 63

IV. Specific Laboratory Safety Procedures ... 64
 A. Shop Safety and Proper Use of Machines .. 64
 B. Laser Safety .. 65
 C. Compressed Gas Cylinders .. 65
 D. Mercury Spills .. 66
 E. Chemicals .. 66
 F. Electrical Hazards .. 66

V. Acknowledgment .. 66

VI. Emergency Phone Number .. 67

VII. Emergency Procedures .. 67
I. INTRODUCTION

The objective of any safety program is to provide a safe working environment in which the hazards to all personnel are minimized. In order to accomplish this goal, safety must be the concern of all members of the institution. Suitable procedures must be devised and followed where potential hazards exist. Common sense must be relied upon to avoid accidents, and expediency is never an excuse for unsafe activities. This information booklet describes the safety regulations and procedures for the Aerospace Engineering Department. These procedures should be followed to ensure a safe environment for all our students, faculty and staff. Safety in our teaching and research laboratories are a direct concern of all the faculty, staff and graduate assistants involved.

II. SAFETY REGULATIONS

Posted in Room 233 and on our Departmental bulletin boards are the University instructions regarding accidents. These instructions include the appropriate telephone numbers and procedures to follow in case of an accident. In addition, it is important to note that: all accidents must be reported to the department office as soon as possible. In the case of an injury, please provide a complete description of the accident and the nature of the injury.

Employees are expected to work in a safe manner, using common sense to avoid accidents. Urgency of completing a test or the use of expedient procedures or equipment is no excuse for taking chances in the laboratory with unsafe conditions. However, even in situations where conscientious attention to safety is the rule, accidents can occur. When an accident does occur it is vital to follow established procedures which will insure the safety of all personnel involved. Once these procedures have been followed, proper reporting of the accident to departmental personnel should follow.

1) An individual is not permitted to work alone at a potentially hazardous task. For example, graduate students or staff are not allowed to operate power tools or similarly dangerous equipment at night unless a companion is in the immediate area.

2) Safety glasses and face shields are available in our machine shop area. You MUST wear them when operating power tools, when around glass that might shatter, when using compressed gases, when working on pressure line connections, etc.

3) When operating electrical equipment avoid chances of grounding one part of your body while using your hands near “hot” lines. “One hand in the pocket” is a good rule. Make sure that your hands are completely dry when handling electrical tools. Don’t experiment with circuits you don’t understand; call a specialist.

4) Accumulation of fumes from volatiles such as gasoline is a great hazard. Use proper ventilation and fume hoods when possible.

5) Handling of compressed gas cylinders should be done with respect afforded to any potentially explosive material.

6) Storage of chemicals is not allowed in refrigerators unless the refrigerator is specially marked suitable for chemicals.

7) Do not block the inlet section of high mass flow rate rotating machinery. These areas should be well guarded with safety cages etc. in order to avoid foreign material suction.

8) Always use earphones when operating noisy test rigs such as axial flow fans, pumps, etc.

These items by no means cover all the problem areas: they do serve as examples. Experimental set-ups of a potentially dangerous nature (explosion, high voltage, high speed rotating machinery, experiments with propellants, etc.) are not to be operated until inspected and approved by our safety committee. It is the responsibility of the PRINCIPAL INVESTIGATOR to contact the safety committee when inspection is required. The committee recommendations will be reviewed by the Department head prior to approving continued operation of any equipment that offers a potential hazard to personnel.
III. SAFETY IN THE LABORATORY

A. Undergraduate in the Laboratory

With Departmental laboratories operating at full student capacity, the introduction of new laboratory projects and exercises result in increased chances of accidents. It is the direct responsibility of EACH FACULTY ADVISOR concerned with laboratory work to:

1) Take every safety precaution in designing and directing laboratory work.

2) Regularly observe students in action and to watch for unsafe practices and unsafe equipment. Encourage reporting of potential hazards.

SOME EXAMPLES OF HAZARDS ARE:

High voltages.

Eye hazards such as chemicals, compressed air or steam leaks, chipped and hammering (SAFETY GLASSES ARE REQUIRED).

Rotating and moving machine parts, such as unguarded coupling or shaft ends that could snap clothing.

Smoking with volatile, combustible solids, liquids or gases nearby.

Compressed gas cylinders.

Laser radiation.

Loose clothing, long hair, wearing jewelry around rotating equipment.

Involving with electrical and welding if you are wearing soft contact lenses without a protective glass.

Using portable cassette players etc. with long/loose earphone cables when you are around rotating machine parts.
B. Graduate Students in the Laboratory

The Aerospace Engineering Department has a large and growing research program which involves a wide variety of sophisticated equipment and apparatus. Some of these research activities may involve potentially hazardous situations and thus require specific procedures for safe operation. Examples of such research areas include those involving high temperature and pressure conditions, concentrated energy sources, high power lasers, rotating machinery with high mass flow rate, high voltages, and liquid/sold propellants.

It is the direct responsibility of EACH FACULTY ADVISOR and GRADUATE STUDENT that safe procedures are observed in the laboratories.

THIS RESPONSIBILITY INCLUDES:

1) Taking appropriate safety precautions in the design and operation of each experiment.
2) Assuring that students and staff engaged in operating equipment are familiar with its operation and potential hazards.
3) Providing appropriate safety equipment in the laboratory. (safety glasses, earphones, respirators, etc.)
4) Where appropriate, start-up, shut-down and also EMERGENCY SHUT-DOWN procedures should be developed and posted.
5) Assuring that students are familiar with university and departmental safety and accident procedures.
6) Assuring that students and researchers are well informed about the locations of safety/emergency/first aid material.
IV. SPECIFIC LABORATORY SAFETY PROCEDURES

A. SHOP SAFETY AND PROPER USE OF MACHINES

Power tools can cause injury if precautions are not taken. The tools in the shop work area are there for your use. It is expected that students will follow safe shop practices when using them.

Some basic procedures to follow to prevent abuse of the machines and possibly your person are:

1) Safety goggles must be worn when operating any power tools. Also, when hammering or using a punch, chips can fly off these tools. Goggles are available in the machine shop area.

2) When operating any power tool, jewelry, such as rings, bracelets, earrings, loose clothes (i.e. ties) etc., should be removed.

3) Individuals who have long hair should use a hairnet or other suitable means to prevent hair from being caught while operating any power tools.

4) Drill press – material being drilled should be secured to the table using a drill vise or other suitable clamping arrangement. Wear goggles, as drill bits can shatter. Be especially careful when drilling sheet metal or any thin materials. Drill bits frequently grab the material when the bit “breaks through”. This will instantly spin the workpiece, you then have something similar to an electric blender with the blades exposed; not good for the hand that is trying to hold the piece. Be extremely careful.

5) Bandsaw – the bandsaw is equipped for cutting 1/8” or thicker metal, wood or plastic. Avoid cutting sheetmetal, it tends to grab the teeth on the blade, removing them in short order. Never push a work piece with your hand or fingers in the same plane as the blade. Should your hand slip, you may find yourself cutting your hand or fingers. Always adjust the blade guide so it is just above your workpiece. This keeps the blade in alignment and vertical. The blade may come off its rollers if this isn’t done.

6) Grinder – always wear goggles. Never stand directly in front of the wheel, your piece can be grabbed or thrown by the wheel, often quite violently. Also, never grind wood, aluminum or softer metals, or plastic on a grinder. Particles of these materials become clogged in the wheel, ruining its effectiveness. Clogging can unbalance the wheel which can cause it to break and explode. Do not grind on the side of the wheel. This can shatter the wheel.

7) GENERAL – be courteous and professional. Horseplay doesn’t belong around power tools, someone could fall into the machine, the distraction could cause another to have an accident etc. Also, clean up after yourself when you are done, the debris left behind could lead to an accident.
B. LASER SAFETY

Lasers are utilized in a variety of research programs within the department and when operating in a proper manner they do not pose a significant safety hazard. However, if operated improperly they can pose significant electrical hazards as well as obvious hazards to eyesight. The following guidelines should be followed when operating any laser system:

1) Do not attempt to use any laser unless you are familiar with its operation and potential hazards and classifications (ANSI-2-I36 Standard).
2) Where appropriate, use laser safety goggles designed for wavelength and power output of that laser.
3) Do not override the safety interlocks intended to prevent operation of the laser. For example, most laser systems prevent operation with the cover off the power supply or laser cavity (plasma tube).
4) When optical elements such as lens, prism, etc., are used with the laser, be careful about specularly reflected beams which result at each surface. These should be blocked to protect personnel in the lab from potential hazards. A neutral density filter on the laser beam should be utilized during the alignment of the optical component in addition to a safety goggle designed for that laser.
5) Never look directly into the laser beam.
6) Never allow the beams to cross windows or any other opening existing in the laboratory. The beams may be dangerous for others outside the lab.
7) It is a good idea to remove jewelry from fingers.
8) Make sure that your hands are completely dry before you switch a power supply on. This is especially important when operating a water-cooled laser power supply.

C. COMPRESSED GAS CYLINDERS

Compressed gas cylinders are safe for the purposes for which they are intended. Serious accidents connected with their handling, use and storage can almost invariably be traced to abuse or mishandling. The following rules cover the main safety rules to be observed in handling compressed gas cylinders. Some information specific to certain gases is included.

1) Compressed gas cylinders should always be moved using a cylinder cart. A cylinder cart is provided for that purpose in room 38 Hammond. The cart must be returned to that area upon completion of the transfer.
2) All compressed gas cylinders should be securely chained and stored only in approved areas.
3) Do not drop cylinders or permit them to strike each other violently.
4) Make sure the regulator to be used is appropriate for the gas and the cylinder pressure. Regulators or pressure gauges for use with a particular gas must not be used on cylinders containing different gases.
5) After attaching the regulator and before the cylinder valve is opened, see that adjusting screw of the regulator is released. Open the cylinder valve slowly; never permit gas to enter the regulator suddenly.
6) Before the regulator is removed from cylinder, close the cylinder valve and release all gas from the regulator.
7) Never store cylinders near high flammable substances, such as oil, gasoline, etc.
8) All cylinders should be protected against excessive rise of temperature. Cylinders may be stored in the open but in such cases should be protected against extremes of weather (ice, snow, direct sunlight in summer, radiators or open flames, etc.).
9) Store full and empty cylinders in separate locations to avoid confusion. When returning empty cylinders, remove lower portion of the shipping tag attached to the cylinder. Close the valve and see that the protective caps and nuts for valve outlets are replaced before shipping empties.
D. MERCURY SPILLS

The following steps should be taken in case of an accident involving a mercury spill.

1) Do not attempt to clean the mercury in the contaminated area. Mercury breaks into tiny particles and further contaminates the area. Special equipment is needed to ensure that contamination is controlled.

2) Mark the contaminated area.

3) Do not walk on the contaminated area.

4) Turn on the air exhaust if available.

5) Leave the Room immediately.

6) Contact the University Environmental Health & Safety Office immediately (865-6391) and notify the Department as soon as possible.

E. CHEMICALS

When using any chemicals be sure that you are knowledgeable concerning their properties and hazards. Material Safety Data Sheets (MSDS) are available and should be read for all chemicals. The University Environmental Health & Safety Office (865-6391) has a large collection of MSDS and should be contacted for copies. Always wear safety glasses and, if appropriate, suitable gloves or other required clothing. All chemicals should be stored in suitable cabinets. Chemical storage areas, hoods, and work space should be neat and well organized. If any spills or leaks occur, please inform personnel in areas below or adjacent to the spill so that appropriate measures to protect personnel and equipment can be made.

F. ELECTRICAL HAZARDS

1) Only qualified personnel are allowed to work on electrical equipment or energized lines.

2) Sparks or smoke from a motor or other electrical equipment can indicate a shock or fire hazard. Turn off the power at once and report the condition promptly to the electric technician in the department.

3) Electrical equipment should not be operated in wet areas. Experiments using water (water channels or water tables) should be designed extremely carefully in terms of electrical insulations and grounding. Water dripping on electrical machinery (transformers and motors) may cause explosions.

4) Experiments involving electric heater power in excess of 10 KW should be supervised very closely and carefully by the faculty advisor responsible for the facility. Heater connections should be checked thoroughly before switching on the heaters. The power lines should also be protected by appropriate thermal circuit breakers.

5) Electrical equipment with frayed or cracked cords should not be used until the cord is replaced.

6) Maximum attention should be exercised not to have excessive amounts of extension cables lying on the ground level in any laboratory.

7) Remove rings and jewelry which could result in electrical contact while working on electrical equipment.

V. Acknowledgment

Preparation of this safety manual was aided by reference to the procedures used by the Departments of Engineering Science & Mechanics and Mechanical Engineering. Their careful effort in preparing the original documents is appreciated.
VI. EMERGENCY TELEPHONE NUMBERS

POLICE SERVICES .. 863-1111
FIRE or ACCIDENT or GAS LEAK or BOMB THREAT ... 911
AMBULANCE .. 911
PHYSICAL PLANT (steam, electricity, etc.) ... 865-4731
ENVIRONMENTAL HEALTH & SAFETY ... 865-6391

VII. EMERGENCY PROCEDURES IN CASE OF FIRE

Location of nearest fire extinguisher (posted in labs)
Location of nearest alarm (throughout building)

1) SOUND THE FIRE ALARM
2) DIAL 911
3) GIVE YOUR NAME AND THE LOCATION OF THE FIRE
 (ROOM ______ Hammond Building)
4) PROCEED TO THE CENTER GRASS AREA IN THE PARKING LOT
 BROWN A
5) DO NOT LEAVE THIS AREA UNTIL INSTRUCTED TO DO SO BY APPROPRIATE UNIVERSITY
 OFFICIALS
REQUIREMENTS FOR WORKING IN OUR LABORATORIES:

You MUST complete the laboratory safety on-line training as described below.

1) Go to Penn State EHS home http://www.ehs.psu.edu/
2) Along the right side of the page click on “Laboratory Safety (initial)”
3) Use your PSU credentials to log-in.
4) You will automatically be redirected to a “Course List”
5) Select “Laboratory Safety and Laboratory Hazard Communication”
6) Inside the sub-menu, select “Laboratory Safety (initial)”
7) You will need to complete ALL four modules of this course, AND pass the associated quizzes.
8) Finally you need to attend a final review session sponsored by EHS.
9) From this point forward you will need to complete the “Laboratory Safety (refresher)” version of this training each year.

Before working in any Laboratory, you MUST locate the “Unit Specific Plan” in the safety manual located near the door of each lab and familiarize yourself with the specific dangers and requirements of each laboratory. You will need to sign the form in the front of the manual indicating you have completed all training.

Additional training sessions may be required depending on the items listed in the “Unit Specific Plan”. You will need to discuss this with your advisor and make a plan to receive the additional training before performing any related work.

REQUIREMENTS FOR USING OUR MACHINE SHOP:

You MUST complete the “Laboratory Safety Initial” training as described above then proceed with the following steps.

1) You MUST complete a basic shop safety course at the PSU Learning Factory.
2) You MUST contact our Laboratory Director to complete a specific training session regarding each machine you plan to use.
3) You MUST schedule EACH use with our Laboratory Director and explain the work you plan to perform.
4) You MUST never work alone! In addition, an authorized “shop monitor” must be present if any undergraduate student is working in the shop.
5) ALL safety rules must be followed as describe during each training.