COLLEGE OF ENGINEERING RESEARCH SYMPOSIUM, FEBRUARY 2017

Methods for Estimation of Hidden Dynamics in
Non-Linear Systems for Predicting Sleep-Wake
States

Fatemeh Bahari*T9, Myles W. Billard*T, Kevin D. Alloway** and Bruce J. Gluckman*'$
*Center for Neural Engineering 'Department of Engineering Science and Mechanics *Department of Neural and
Behavioral Sciences $Department of Neurosurgery
The Pennsylvania State University, University Park, PA 16802 Y Email: fzb116@psu.edu

Abstract—There is extensive clinical and experimental evidence
that links sleep state to seizure generation. Sleep-wake regulation
is also altered in epileptic brain. In order to investigate this bi-
directional coupling we need to understand the physiology of
sleep-wake regulation in normal and epileptic brains. In order
to do so we have physiologically-based mathematical models of
sleep-wake regulatory system and experimental measurements
from this system in chronically implanted normal and epileptic
animals. OQur objective is to assimilate sparse noisy measurements
from the system - such as EEG and behaviorally measured state
of vigilance as well as unit recordings from the represented
cell groups- into these mathematical models, and thereby both
validate or improve the models and detect changes in physiology.
Critical to applying this technique to real biological systems is
the need to estimate the underlying model parameters. Here,
we present an estimation technique capable of simultaneously
fitting and tracking multiple model parameters to optimize the
reconstructed system state. Performance is gauged by reconstruc-
tion and forecasting of state from noisy observations of model-
generated data, and compared to other conventional parameter
tracking methods. In addition, we have extended our methodol-
ogy to use state of vigilance as an indirect set of observations
relevant to cell-group activities involved in sleep-wake regulation.
We can therefore assimilate these indirect observations into the
optimized model dynamics to track and predict future state of
vigilance in normal and epileptic rats.

I. INTRODUCTION

An epileptic seizure is a transient neurological event due
to abnormal brain activity that causes partial or complete loss
of control. Persons with epilepsy experience neurological and
neurologically sourced pathologies that significantly impact
quality of life. One such pathology is sleep disruption. There
is a long and established clinical history of the relationship
between sleep state and seizure dynamics [1]. Not only is state
of vigilance (awake and alert vs. sleep) or more generally brain
state affected by epileptic activity, sleep state also confounds
any potential pre-seizure signature [2]. Hence it will infinitely
complicate any effort towards accurate seizure prediction and
detection. To our knowledge, there are no current seizure
prediction algorithms that specifically account for the state of
vigilance, most likely due to the difficulty of classifying the
sleep state based on ElectroEncephalography (EEG).

Sleep state is an emergent phenomenon of the brain net-
work. Changes in sleep state depend on the chemical balance
of several crucial neurotransmitters, which in turn are con-

trolled by other factors such as the history of previous sleep
states (fatigue) as well as environmental inputs (day vs. night,
loud noises). Measurements spanning these elements are often
both technically challenging and highly invasive. However,
stabilization of sleep-wake cycles is hypothesized to be a
means to treat aspects of psychiatric and neurodegenerative
diseases such as epilepsy (see for example: [3]). But to do
so in a minimally invasive, targeted fashion requires accurate
models of the relevant dynamics, and is further constrained by
the ability to observe the destabilized dynamics. Additionally,
if we understand and can observe the dynamics of the brain
network that regulate sleep-wake behavior, then we can iden-
tify its coupling to the symptoms associated with neurological
diseases and develop interventions.

Due to advances in computational neuroscience, physiol-
ogy, and genetics, several groups have published models of
the brain’s sleep-wake network [4]. The models are species
dependent, high dimensional (10-22 variables) with many
parameters, and non-linear. If we could observe or measure
all of the physiological activities and interactions represented
as variables within these models, we could first validate
the models and then utilize them to gain a mechanistic
understanding of the brain dynamics throughout transitions.
Further, we can ultimately iterate the model forward and
predict future sleep states. A major consideration is the cost of
particular measurements. In neurophysiological experiments,
not only are these measurements financially expensive with
high medical risks due to invasive implants, but also they can
cause significant and often irreversible damage to the subject
of the measurements.

Another major consideration regards the parameters of the
model. Although these mathematical models of sleep-wake
regulation have the potential to provide mechanistic informa-
tion about the underlying dynamics, their default parameter
sets are often based on simulated conditions and are thus
far from the real system. The process of fitting the model
parameters to observations of the real system allows potential
identification of the root mechanisms of the disease which
might not otherwise be known, and therefore opens new
avenues for minimally invasive and optimal interventions.
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II. METHODS

We have established a rodent model of spontaneous epilepsy
which translates well to human temporal lobe epilepsy. Our
rodents are continuously cabled for EEG, head acceleration,
and single cell recordings. We also perform continuous video
monitoring. We have overcome the barriers in obtaining accu-
rate measures of the state of vigilance by combining features
extracted from the EEG with head acceleration. The states of
vigilance (SOV) are defined as wake and two types of sleep:
rapid eye movement (REM) and non-rapid eye movement
(NREM). We have also established a robust system to access
and chronically record from sleep-regulatory brain structures
deeply embedded in brainstem. Our suite of measurements
thus offers a platform to study the physiology of sleep-wake
regulation both at the cellular and network level.

In order to address the challenges involved in using math-
ematical models we have combined data assimilation with
techniques used mainly in control theory to make accurate
weather predictions, one of which is Unscented Kalman Filter
(UKF). Data assimilation is an iterative prediction-correction
scheme that synchronizes a computational model to observed
dynamics. In this setting UKF uses the governing equations
of the sleep models and any variables in the model that we
are able to measure to fully reconstruct model variables, and
provides for forecasting of future states [5], [6].

A. Observations from State of Vigilance

The cell groups represented in the mathematical models as
variables that regulate sleep-wake behavior are deeply embed-
ded in brainstem. Therefore directly measuring their activity
and interactions with invasive probes is technically challenging
and sometimes even impossible with current technology. These
measurements when possible are often highly damaging to
delicate systems that are critical for organism survival. It is
therefore advantageous to observe these dynamics through the
data assimilation tools using less invasive/less costly measure-
ments.

One approach that we introduced in [7] was to invert the
classified SOV time series into estimates of the cell group
activity levels. In particular, we utilized the SOV-dependent
median activity levels of the corresponding cell groups as the
inversion. Although assimilation of the SOV-derived observa-
tions into UKF yielded reasonable reconstruction accuracy, the
forecast values of the variables did not follow physiological
expectations and some of the finer features of the dynamics
were not well-reconstructed.

Here we extend this inversion to include information about
time since the last state transition. In particular, we use model
generated data to create distributions of activity levels of the
cell groups as a function of time since transition into each state
of vigilance. The means of these distributions over time, shown
for three firing rate variables for each SOV in Fig. 1b, along
with their variance, are used to translate the state of vigilance
as a function of time into probability of activity levels, which
is then handed to the UKF as observations.
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Fig. 1: Observation model from State of Vigilance to cell group
activity levels. (a) Measured State of Vigilance (SOV), (b)
SOV mean and variance conditioned on time since transition
to each state to Probability Distribution Function (PDF) of
activity levels of the cell-groups responsible for sleep-wake
regulation

B. Multi-Parameter Fitting

The mathematical models we use are based on approxi-
mations of the average cell group activities regulating sleep-
wake behavior. Therefore, the parameters of these models
are inherently estimates of actual physical quantities in real
brain. Brains from different species and even brains from
individuals from the same species vary. So we expect them
to have different representative parameters just as they ex-
press different detailed sleep-wake dynamics. These variations
introduce the gap between computational models developed
using (mostly) simulated conditions, and our real and noisy
systems (rodents). Therefore, before we can utilize the UKF
to reconstruct the system, we have to first estimate the true
parameter set [7]. To address this challenge we look to
nonlinear data fitting literature and borrow the Levenberg-
Marquardt fitting technique [8]. We couple this algorithm with
the UKF to simultaneously estimate multiple parameters of
the model while fully reconstructing the dynamics of the real
system.

Nonlinear least squares methods involve an iterative im-
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Fig. 2: Levenberg-Marquardt Minimization Routine [8]. For
parameter A small, the approach follows a Gauss-Newton
methodology, otherwise it follows a Gradient-Descent ap-
proach. This serves to accelerate convergence close to the
minimum of the cost function.

provement to parameter values in order to minimize the sum
of the squares of the errors between the fitted function and
the measured data points. The Levenberg-Marquardt curve-
fitting method is a combination of two minimization methods
(Fig. 2): the gradient descent method and the Gauss-Newton
method. In the gradient descent method, the sum of the squared
errors is reduced by updating the parameters such that the
system moves in the steepest-descent direction to minimize the
squared error. In the Gauss-Newton method, the cost function -
the sum of the squared errors - is reduced by assuming the least
squares function is locally quadratic, and finding the minimum
of the quadratic.

The Levenberg-Marquardt method acts as a gradient-descent
method when the parameters are far from their optimal value,
and as a Gauss-Newton method when the parameters are close
to their optimal value. In detail, it is tuned via the parameter A,
which is adjusted on an iteration by iteration basis based on the
total cost function value. When the parameters are too far away
from their correct value, the algorithm applies small update
values to the parameters to slowly improve the approximation
such that the system stays in the stable neighborhood. Once the
error function has decreased to the point that there is no danger
of divergence, the algorithm switches to the Gauss-Newton
method and applies larger update values to the parameters
to fully minimize the now locally quadratic squared error
function.

III. RESULTS

The performance of our parameter estimation method is
illustrated in Fig. 3. Parameter estimation is performed by
minimizing the cumulative divergence between short model-
generated trajectories and UKF-reconstruction. In practice, the
minimization step is applied to UKF-reconstructed trajectories
that are at least one sleep-wake cycle long in order to sample
the state space. Additionally, the short trajectories are set such
that they are long enough for parameter differences to cause

significant divergence between model-generated trajectories
and UKF-reconstructed dynamics.

Shown in the upper two rows of Fig. 3 are the diver-
gences of model-generated trajectories (cyan trace) from the
reconstructed state trajectory (red trace) for two of the model
variables. As the fitting progresses in time (latter columns),
the dynamics track better. In the lower panels are shown the
simultaneous changes in the three parameters being estimated
(upper panel), the cost function (second panel), and reconstruc-
tion error values for the two variables in the upper panels.

We validated our iterative full-state and multi-parameter
estimation methodology against invasive measurements from
one of the cell groups represented in the model to be REM
active. Rats were implanted with electrodes in brainstem REM
active targets, hippocampus, and cortex. After 1-2 weeks
recovery, animals were connected to a recording system while
we measured EEG, head acceleration and single-cell activities.
Recordings were then analyzed as follows: Combinations of
hippocampal and cortical field potentials along with head ac-
celeration were used to score state of vigilance [9]. Separately,
we analyzed our single-cell recordings from the REM-active
cell group to extract activity levels of the group over time.
The model parameters were then updated within the data
assimilation framework using extracted state of vigilance as
observations of the system.

Shown in Fig. 4 are the results from applying the methods
described earlier. In particular, the hippocampal and cortical
recordings were used to classify the SOV for the animal as
shown in upper panel of Fig. 4. We then passed these mea-
surements (Fig. 1a) through our observation model (Fig. 1b)
to reconstruct activity levels of the sleep-wake regulatory cell
groups represented in the model. The REM-active activity
levels from this reconstruction are shown in the lower panel
of Fig. 4(red trace), along with the activity levels computed
from actual, simultaneously measured single-cell recordings
from the REM-active cell group (black trace).

Because the single-cell recording was not used in the
original classification of the animal’s SOV, we can use it as
an actual measurement of the reconstructed state to validate
the model reconstruction of the activity of REM-active cell
group. The correspondence is reasonably good, and accurately
predicts the onset of increases in the activity levels as the
animal transitions to the REM state.

It is important to note that the single-cell recording is
not independent of the state of vigilance. In particular, the
recordings are classified to be measurements from a REM-
active cell-group because (1) further histological analysis of
the electrode track in the brain, asserts that the electrode
was indeed within a known REM-active structure and (2) the
periods of higher activity are observed during REM periods.
We are currently repeating our experimental measurements
across multiple animals to acquire long datasets. We can
then apply our modeling analysis to only a fraction of the
acquired data to classify state of vigilance and model state
reconstruction and prediction. The forecast trajectories can
then be validated against the other fraction (test set) of the data
to gauge how accurate the model represents the physiological
dynamics.
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Fig. 3: Simultaneous Parameter Fitting. As the parameters converge to their correct value, the error between model-generated
trajectories and actual system dynamics decreases. The error will arrive at its minimum once all the parameters converge to
their correct values. The parameter fitting process requires approximately 2hours of model generated data to stabilize while in
real-time, it is computationally efficient with run-time of approximately 2-3 minutes.
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Fig. 4: Animal SOV to activity levels computed from REM-
active cell group. State of vigilance (SOV) was acquired
from animal hippocampal and cortical recordings. It was
then passed through our observation model and used to fully
reconstruct the model variables represented in the model. The
reconstructed activity levels of the REM active cell group (Red
trace) were then compared against activity levels computed
from invasive, simultaneously measured single-cell recordings
from the REM-active cell group. Model reconstruction predicts
the original measurements reasonably accurately.

IV. CONCLUSION

In summary, understanding the role of sleep-wake regu-
lation in epilepsy can drastically improve and even change
our approaches in proposing effective treatments. We have
established a framework to mechanistically study these dy-

namics by incorporating experimental measurements into
physiologically-based mathematical models. Our efforts will
introduce new avenues in model validation, as well as im-
proved understanding of network interactions in epileptic
and healthy brain. This has been made possible through the
integration of techniques from four different fields. Once we
validate the predictive performance of our algorithm, we will
move forward to incorporate it into algorithms for seizure
prediction.

In a general framework, we assert that data assimilation
methods, coupled with dynamical models that embody the
governing mechanisms of brain state, will allow for more
robust neural prosthetic controllers. We further hypothesize
that once such methods are used to validate the models they
utilize, which will involve expensive measurements of the
variables embodied in the models, that they can be scrutinized
to identify the least-costly measures that will allow sufficient
observation to achieve the desired levels of control. The
elimination of highly-invasive and damaging measurements
together with the capability of data assimilation methods to
provide a mechanistic explanation of the underlying dynamics
can then offer a platform to further identify unstable phe-
nomena in different pathologies and thus propose effective
intervention.
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